scholarly journals Investigation of structure and ionic conductivity of (PEO)12-SiO2-LiClO4 nanocomposite electrolyte for all solid-state lithium-ion battery

2021 ◽  
Vol 1765 ◽  
pp. 012016
Author(s):  
Y Z Li ◽  
Y P Yang ◽  
R Y Lei ◽  
S D Fu ◽  
R G Wan ◽  
...  
2020 ◽  
Vol MA2020-01 (2) ◽  
pp. 271-271
Author(s):  
Akinari Ohashi ◽  
Manabu Kodama ◽  
Tomoki Yasuda ◽  
Satoshi Hori ◽  
Kota Suzuki ◽  
...  

2021 ◽  
Vol 4 (2) ◽  
pp. 1228-1236
Author(s):  
Valerio Gulino ◽  
Matteo Brighi ◽  
Fabrizio Murgia ◽  
Peter Ngene ◽  
Petra de Jongh ◽  
...  

2019 ◽  
Vol 16 (29) ◽  
pp. 181-187 ◽  
Author(s):  
James E. Trevey ◽  
Yoon S. Jung ◽  
Se-Hee Lee

2016 ◽  
Vol 170 ◽  
pp. 126-129 ◽  
Author(s):  
Junying He ◽  
Jiuqing Liu ◽  
Jie Li ◽  
Yanqing Lai ◽  
Xiufeng Wu

2013 ◽  
Vol 49 (64) ◽  
pp. 7174 ◽  
Author(s):  
Suguru Ikeda ◽  
Takayuki Ichikawa ◽  
Koji Kawahito ◽  
Kazuhiro Hirabayashi ◽  
Hiroki Miyaoka ◽  
...  

Ceramics ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 421-436
Author(s):  
Aamir Iqbal Waidha ◽  
Vanita Vanita ◽  
Oliver Clemens

Composite electrolytes containing lithium ion conducting polymer matrix and ceramic filler are promising solid-state electrolytes for all solid-state lithium ion batteries due to their wide electrochemical stability window, high lithium ion conductivity and low electrode/electrolyte interfacial resistance. In this study, we report on the polymer infiltration of porous thin films of aluminum-doped cubic garnet fabricated via a combination of nebulized spray pyrolysis and spin coating with subsequent post annealing at 1173 K. This method offers a simple and easy route for the fabrication of a three-dimensional porous garnet network with a thickness in the range of 50 to 100 µm, which could be used as the ceramic backbone providing a continuous pathway for lithium ion transport in composite electrolytes. The porous microstructure of the fabricated thin films is confirmed via scanning electron microscopy. Ionic conductivity of the pristine films is determined via electrochemical impedance spectroscopy. We show that annealing times have a significant impact on the ionic conductivity of the films. The subsequent polymer infiltration of the porous garnet films shows a maximum ionic conductivity of 5.3 × 10−7 S cm−1 at 298 K, which is six orders of magnitude higher than the pristine porous garnet film.


2021 ◽  
Vol MA2021-01 (51) ◽  
pp. 2015-2015
Author(s):  
Yuchun Sun ◽  
Kai Narita ◽  
Max A. Saccone ◽  
Seola Lee ◽  
Julia R. Greer

Sign in / Sign up

Export Citation Format

Share Document