organic electrolytes
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 85)

H-INDEX

43
(FIVE YEARS 7)

2021 ◽  
pp. 2108777
Author(s):  
Qianru Chen ◽  
Yangguang Lv ◽  
Zhizhang Yuan ◽  
Xianfeng Li ◽  
Guihua Yu ◽  
...  

2021 ◽  
pp. 117948
Author(s):  
Anna N. Laguta ◽  
Nikolay O. Mchedlov-Petrossyan ◽  
Sergey I. Bogatyrenko ◽  
Sergiy M. Kovalenko ◽  
Natalya D. Bunyatyan ◽  
...  

2021 ◽  
Vol MA2021-02 (24) ◽  
pp. 786-786
Author(s):  
Yanuar Philip Wijaya ◽  
Kevin J. Smith ◽  
Chang Soo Kim ◽  
Elod L. Gyenge
Keyword(s):  

Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 63
Author(s):  
Bhavya Kotak ◽  
Yash Kotak ◽  
Katja Brade ◽  
Tibor Kubjatko ◽  
Hans-Georg Schweiger

Battery safety is a prominent concern for the deployment of electric vehicles (EVs). The battery powering an EV contains highly energetic active materials and flammable organic electrolytes. Usually, an EV battery catches fire due to its thermal runaway, either immediately at the time of the accident or can take a while to gain enough heat to ignite the battery chemicals. There are numerous battery abuse testing standards and regulations available globally. Therefore, battery manufacturers are always in dilemma to choose the safest one. Henceforth, to find the optimal outcome of these two major issues, six standards (SAE J2464:2009, GB/T 31485-2015:2015, FreedomCAR:2006, ISO 12405-3:2014, IEC 62660-2:2010, and SAND2017-6295:2017) and two regulations (UN/ECE-R100.02:2013 and GTR 20:2018), that are followed by more than fifty countries in the world, are investigated in terms of their abuse battery testing conditions (crush test). This research proves that there is a need for (a) augmenting these standards and regulations as they do not consider real-life vehicle crash scenarios, and (b) one harmonised framework should be developed, which can be adopted worldwide. These outcomes will solve the battery manufacturers dilemma and will also increase the safety of EV consumers.


2021 ◽  
Author(s):  
Zaher Slim ◽  
Erik Menke

The corrosivity of chloride-based electrolytes is a major shortcoming in the practical realization of rechargeable aluminum batteries. Herein, the effect of Cl- on Al speciation and electrochemistry in tetrahydrofuran was measured by employing theoretical and experimental approaches for three systems: Al(OTF)3/THF, Al(OTF)3 plus LiCl in THF, and AlCl3/THF. The high consistency between measured and computed spectroscopic aspects associated with Al(OTF)3/THF electrolyte provided both a rationale for understanding Al complex-ion formation in a Cl- free environment and an approach for examining the effect of Cl- on Al speciation. Room-temperature Al plating was achieved from dilute solutions ([Al] = 0.1M) at potentials ≥ 0V (vs. Al⁄Al3+). Cl- is found to enable facile Al plating and SEM reveals that Al is electrochemically deposited as nanocrystalline grains.


2021 ◽  
Author(s):  
Zaher Slim ◽  
Erik Menke

The corrosivity of chloride-based electrolytes is a major shortcoming in the practical realization of rechargeable aluminum batteries. Herein, the effect of Cl- on Al speciation and electrochemistry in tetrahydrofuran was measured by employing theoretical and experimental approaches for three systems: Al(OTF)3/THF, Al(OTF)3 plus LiCl in THF, and AlCl3/THF. The high consistency between measured and computed spectroscopic aspects associated with Al(OTF)3/THF electrolyte provided both a rationale for understanding Al complex-ion formation in a Cl- free environment and an approach for examining the effect of Cl- on Al speciation. Room-temperature Al plating was achieved from dilute solutions ([Al] = 0.1M) at potentials ≥ 0V (vs. Al⁄Al3+). Cl- is found to enable facile Al plating and SEM reveals that Al is electrochemically deposited as nanocrystalline grains.


Author(s):  
Olha Smirnova ◽  
Alexander Sincheskul ◽  
Andrej Nikonov ◽  
Yulia Mukhina ◽  
Nataliia Breslavets ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document