scholarly journals Classification of medical images of patients with Covid-19 using transfer learning technology of convolutional neural network

2021 ◽  
Vol 1801 (1) ◽  
pp. 012010
Author(s):  
A S Miroshnichenko ◽  
V M Mikhelev
2021 ◽  
Author(s):  
Farrel Athaillah Putra ◽  
Dwi Anggun Cahyati Jamil ◽  
Briliantino Abhista Prabandanu ◽  
Suhaili Faruq ◽  
Firsta Adi Pradana ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Gayatri Pattnaik ◽  
Vimal K. Shrivastava ◽  
K. Parvathi

Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.


2020 ◽  
Vol 6 (11) ◽  
pp. 127
Author(s):  
Ibrahem Kandel ◽  
Mauro Castelli ◽  
Aleš Popovič

The classification of the musculoskeletal images can be very challenging, mostly when it is being done in the emergency room, where a decision must be made rapidly. The computer vision domain has gained increasing attention in recent years, due to its achievements in image classification. The convolutional neural network (CNN) is one of the latest computer vision algorithms that achieved state-of-the-art results. A CNN requires an enormous number of images to be adequately trained, and these are always scarce in the medical field. Transfer learning is a technique that is being used to train the CNN by using fewer images. In this paper, we study the appropriate method to classify musculoskeletal images by transfer learning and by training from scratch. We applied six state-of-the-art architectures and compared their performance with transfer learning and with a network trained from scratch. From our results, transfer learning did increase the model performance significantly, and, additionally, it made the model less prone to overfitting.


Sign in / Sign up

Export Citation Format

Share Document