scholarly journals Classification of High-Spatial-Resolution Remote Sensing Scenes Method Using Transfer Learning and Deep Convolutional Neural Network

Author(s):  
Wenmei Li ◽  
Ziteng Wang ◽  
Yu Wang ◽  
Jiaqi Wu ◽  
Juan Wang ◽  
...  
2020 ◽  
Author(s):  
Wenmei Li ◽  
Juan Wang ◽  
Ziteng Wang ◽  
Yu Wang ◽  
Yan Jia ◽  
...  

Deep convolutional neural network (DeCNN) is considered one of promising techniques for classifying the high spatial resolution remote sensing (HSRRS) scenes, due to its powerful feature extraction capabilities. It is well-known that huge high quality labeled datasets are required for achieving the better classification performances and preventing over-fitting, during the training DeCNN model process. However, the lack of high quality datasets often limits the applications of DeCNN. In order to solve this problem, in this paper, we propose a HSRRS image scene classification method using transfer learning and DeCNN (TL-DeCNN) model in few shot HSRRS scene samples. Specifically, three typical DeCNNs of VGG19, ResNet50 and InceptionV3, trained on the ImageNet2015, the weights of their convolutional layer for that of the TL-DeCNN are transferred, respectively. Then, TL-DeCNN just needs to fine-tune its classification module on the few shot HSRRS scene samples in a few epochs. Experimental results indicate that our proposed TL-DeCNN method provides absolute dominance results without over-fitting, when compared with the VGG19, ResNet50 and InceptionV3, directly trained on the few shot samples.


2020 ◽  
Author(s):  
Wenmei Li ◽  
Juan Wang ◽  
Ziteng Wang ◽  
Yu Wang ◽  
Yan Jia ◽  
...  

Deep convolutional neural network (DeCNN) is considered one of promising techniques for classifying the high spatial resolution remote sensing (HSRRS) scenes, due to its powerful feature extraction capabilities. It is well-known that huge high quality labeled datasets are required for achieving the better classification performances and preventing over-fitting, during the training DeCNN model process. However, the lack of high quality datasets often limits the applications of DeCNN. In order to solve this problem, in this paper, we propose a HSRRS image scene classification method using transfer learning and DeCNN (TL-DeCNN) model in few shot HSRRS scene samples. Specifically, three typical DeCNNs of VGG19, ResNet50 and InceptionV3, trained on the ImageNet2015, the weights of their convolutional layer for that of the TL-DeCNN are transferred, respectively. Then, TL-DeCNN just needs to fine-tune its classification module on the few shot HSRRS scene samples in a few epochs. Experimental results indicate that our proposed TL-DeCNN method provides absolute dominance results without over-fitting, when compared with the VGG19, ResNet50 and InceptionV3, directly trained on the few shot samples.


2021 ◽  
pp. 1-10
Author(s):  
Gayatri Pattnaik ◽  
Vimal K. Shrivastava ◽  
K. Parvathi

Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.


Author(s):  
Amith Chandrakant Chawan ◽  
Vaibhav K Kakade ◽  
Jagannath K Jadhav

Remote sensing imaging (RSI) technology has recently been identified as an effective photogrammetric data acquisition platform to rapidly provide high resolution images due to its profitability, its ability to fly at low altitude and the ability to analysis in dangerous areas. The various kinds of classification techniques are have been used for flood extent mapping for finding the flood affected region, but based on the color region based analysis the classified hazardous area has very complex. Due to over the above issues in this work there significant enhancements have appeared in the classification of remote sensing images using Contiguous Deep Convolutional Neural Network (CDCNN).In the flood detection system the four different kinds of process like preprocessing, segmentation, feature extraction and the Contiguous Deep Convolutional Neural Network (CDCNN) has been executed for identifying the flood defected region. This works also investigates and compare with the possible methods with the proposed CDCNN for accurately identified by the Classification details of the RSI


Sign in / Sign up

Export Citation Format

Share Document