scholarly journals Kruskal-Szekeres coordinates of spherically symmetric solutions in theories of gravity

2021 ◽  
Vol 1816 (1) ◽  
pp. 012030
Author(s):  
A Romadani ◽  
M F Rosyid
Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 68 ◽  
Author(s):  
Sebastian Bahamonde ◽  
Konstantinos Dialektopoulos ◽  
Ugur Camci

It is broadly known that Lie point symmetries and their subcase, Noether symmetries, can be used as a geometric criterion to select alternative theories of gravity. Here, we use Noether symmetries as a selection criterion to distinguish those models of f ( R , G ) theory, with R and G being the Ricci and the Gauss–Bonnet scalars respectively, that are invariant under point transformations in a spherically symmetric background. In total, we find ten different forms of f that present symmetries and calculate their invariant quantities, i.e., Noether vector fields. Furthermore, we use these Noether symmetries to find exact spherically symmetric solutions in some of the models of f ( R , G ) theory.


2018 ◽  
Vol 15 (09) ◽  
pp. 1850152 ◽  
Author(s):  
Lorenzo Sebastiani

In this paper, we will consider a subclass of models of Horndeski theories of gravity and we will check for several Static Spherically Symmetric solutions. We will find a model which admits an exact black hole (BH) solution and we will study its thermodynamics by using the Euclidean Action. We will see that, in analogy with the case of General Relativity (GR), the integration constant of the solution can be identified with the mass of the BH itself. Other solutions will be discussed, by posing special attention on the possibility of reproducing the observed profiles of the rotation curves of galaxies. a


Sign in / Sign up

Export Citation Format

Share Document