scholarly journals Massless particle of any spin in static uncharged spherically symmetric curved spacetimes

2021 ◽  
Vol 1956 (1) ◽  
pp. 012021
Author(s):  
Amnon Moalem ◽  
Alexander Gersten
Open Physics ◽  
2011 ◽  
Vol 9 (4) ◽  
Author(s):  
Ivan Arraut ◽  
Davide Batic ◽  
Marek Nowakowski

AbstractWe find simple expressions for velocity of massless particles with dependence on the distance, r, in Schwarzschild coordinates. For massive particles these expressions give an upper bound for the velocity. Our results apply to static spherically symmetric metrics. We use these results to calculate the velocity for different cases: Schwarzschild, Schwarzschild-de Sitter and Reissner-Nordström with and without the cosmological constant. We emphasize the differences between the behavior of the velocity in the different metrics and find that in cases with naked singularity there always exists a region where the massless particle moves with a velocity greater than the velocity of light in vacuum. In the case of Reissner-Nordström-de Sitter we completely characterize the velocity and the metric in an algebraic way. We contrast the case of classical naked singularities with naked singularities emerging from metric inspired by noncommutative geometry where the radial velocity never exceeds one. Furthermore, we solve the Einstein equations for a constant and polytropic density profile and calculate the radial velocity of a photon moving in spaces with interior metric. The polytropic case of radial velocity displays an unexpected variation bounded by a local minimum and maximum.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter presents the basics of the ‘effective-one-body’ approach to the two-body problem in general relativity. It also shows that the 2PN equations of motion can be mapped. This can be done by means of an appropriate canonical transformation, to a geodesic motion in a static, spherically symmetric spacetime, thus considerably simplifying the dynamics. Then, including the 2.5PN radiation reaction force in the (resummed) equations of motion, this chapter provides the waveform during the inspiral, merger, and ringdown phases of the coalescence of two non-spinning black holes into a final Kerr black hole. The chapter also comments on the current developments of this approach, which is instrumental in building the libraries of waveform templates that are needed to analyze the data collected by the current gravitational wave detectors.


1965 ◽  
Vol 6 (1) ◽  
pp. 1-5 ◽  
Author(s):  
P. G. Bergmann ◽  
M. Cahen ◽  
A. B. Komar

1997 ◽  
Vol 12 (27) ◽  
pp. 4831-4835 ◽  
Author(s):  
K. S. Virbhadra

We show that the well-known most general static and spherically symmetric exact solution to the Einstein-massless scalar equations given by Wyman is the same as one found by Janis, Newman and Winicour several years ago. We obtain the energy associated with this space–time and find that the total energy for the case of the purely scalar field is zero.


Sign in / Sign up

Export Citation Format

Share Document