scholarly journals Application of Meta family Classifiers for monitoring hydraulic brake system using vibration based statistical learning approach

2021 ◽  
Vol 1969 (1) ◽  
pp. 012050
Author(s):  
Mohit Nikhil Wagh ◽  
T M Alamelu Manghai ◽  
R Jegadeeshwaran ◽  
D Saravanakumar ◽  
N Raghukiran
Author(s):  
Alamelu Manghai T. M ◽  
Jegadeeshwaran R

Vibration-based continuous monitoring system for fault diagnosis of automobile hydraulic brake system is presented in this study. This study uses a machine learning approach for the fault diagnosis study. A hydraulic brake system test rig was fabricated. The vibration signals were acquired from the brake system under different simulated fault conditions using a piezoelectric transducer. The histogram features were extracted from the acquired vibration signals. The feature selection process was carried out using a decision tree. The selected features were classified using fuzzy unordered rule induction algorithm ( FURIA ) and Repeated Incremental Pruning to Produce Error Reduction ( RIPPER ) algorithm. The classification results of both algorithms for fault diagnosis of a hydraulic brake system were presented. Compared to RIPPER and J48 decision tree, the FURIA performs better and produced 98.73 % as the classification accuracy.


Author(s):  
M.N. Gajre ◽  
R. Jegadeeshwaran ◽  
V. Sugumaran ◽  
A. Talbar

Brakes are indispensable element of automobile. It takes significant factor to slow down or stop vehicle at an instant which will help to prevent an incident or accident in panic scenario. In appropriate braking or breakdown in braking system may direct devastating effect on automobile as well as traveller safety. To enhance potential of braking system condition monitoring is drastic demand in automotive field. This research predominantly concentrates towards fault diagnosis of a hydraulic brake system with the principle of vibration signal. Feature extraction, feature selection and feature classification are the key measures under machine learning approach. Feature extraction can certainly accomplished by acquiring vibration from the system. Statistical features were for the fault diagnosis of hydraulic brake system. Best first tree algorithm will pick most effective features that will differentiate the fault conditions of the brake through given train samples. Fuzzy logic was selected as a classifier. In the present study, fuzzy classifier with the best first tree rules was used to perform the classification accuracy.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Wenbo Wu ◽  
Jiaqi Chen ◽  
Liang Xu ◽  
Qingyun He ◽  
Michael L. Tindall

2017 ◽  
Author(s):  
Xiangkun He ◽  
Xuewu Ji ◽  
Kaiming Yang ◽  
Yulong Liu ◽  
Jian WU ◽  
...  

Author(s):  
Snegdha Gupta ◽  
Harish Hirani

Quick response and rheological properties as a function of magnetic field are well known features of MR fluids which inspire their usage as brake materials. Controllable torque and minimum weight of brake system are the deciding functions based on which the viability of the MR brake against the conventional hydraulic brake system can be judged. The aim of this study is to optimize a multi-disk magneto-rheological brake system considering torque and weight as objective functions and geometric dimensions of conventional hydraulic brake as constraints. The electric current accounting magnetic saturation, MR gap, number of disk, thickness of disk, and outer diameter of disk have been considered as design variables. To model the behavior of MR Fluid, Bingham and Herschel Bulkley models have been compared. To implement these models in estimating the braking torque a modification in shear rate dependent component has been proposed. The overall design of MR brake has been optimized using a hybrid (Genetic algorithm plus gradient based) optimization scheme of MATLAB software.


Sign in / Sign up

Export Citation Format

Share Document