Vibration based Fault Diagnosis of Automobile Hydraulic Brake System using Fuzzy Logic with Best First Tree Rules

Author(s):  
M.N. Gajre ◽  
R. Jegadeeshwaran ◽  
V. Sugumaran ◽  
A. Talbar

Brakes are indispensable element of automobile. It takes significant factor to slow down or stop vehicle at an instant which will help to prevent an incident or accident in panic scenario. In appropriate braking or breakdown in braking system may direct devastating effect on automobile as well as traveller safety. To enhance potential of braking system condition monitoring is drastic demand in automotive field. This research predominantly concentrates towards fault diagnosis of a hydraulic brake system with the principle of vibration signal. Feature extraction, feature selection and feature classification are the key measures under machine learning approach. Feature extraction can certainly accomplished by acquiring vibration from the system. Statistical features were for the fault diagnosis of hydraulic brake system. Best first tree algorithm will pick most effective features that will differentiate the fault conditions of the brake through given train samples. Fuzzy logic was selected as a classifier. In the present study, fuzzy classifier with the best first tree rules was used to perform the classification accuracy.

Author(s):  
Alamelu Manghai T. M ◽  
Jegadeeshwaran R

Vibration-based continuous monitoring system for fault diagnosis of automobile hydraulic brake system is presented in this study. This study uses a machine learning approach for the fault diagnosis study. A hydraulic brake system test rig was fabricated. The vibration signals were acquired from the brake system under different simulated fault conditions using a piezoelectric transducer. The histogram features were extracted from the acquired vibration signals. The feature selection process was carried out using a decision tree. The selected features were classified using fuzzy unordered rule induction algorithm ( FURIA ) and Repeated Incremental Pruning to Produce Error Reduction ( RIPPER ) algorithm. The classification results of both algorithms for fault diagnosis of a hydraulic brake system were presented. Compared to RIPPER and J48 decision tree, the FURIA performs better and produced 98.73 % as the classification accuracy.


The fast developing wind industry has revealed a requirement for more multifaceted fault diagnosis system in the segments of a wind turbine. “Present wind turbine researches concentrate on enhancing their dependability quality and decreasing the cost of energy production, especially when wind turbines are worked in off-shore places. Wind turbine blades are ought to be an important component among the other basic segments in the wind turbine framework since they transform dynamic energy of wind into useable power and due to environmental conditions, it get damage often and cause lack in productivity. The main objective of this study is to carry out a fault identification model for wind turbine blade using a machine learning approach through vibration data to classify the blade condition. Here five faults namely, blade bend, hub-blade loose connection, blade cracks, blade erosion and pitch angle twist have been considered. Machine learning approach has three steps namely feature extraction, feature selection and feature classification. Feature extraction was carried out by statistical analysis followed by feature selection using J48 decision tree algorithm. Feature classification was done using twelve rule based classifiers using WEKA. The results were compared with respect to the classification accuracy and the computational time of the classifier.”


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7467
Author(s):  
Shih-Lin Lin

Rolling bearings are important in rotating machinery and equipment. This research proposes variational mode decomposition (VMD)-DenseNet to diagnose faults in bearings. The research feature involves analyzing the Hilbert spectrum through VMD whereby the vibration signal is converted into an image. Healthy and various faults show different characteristics on the image, thus there is no need to select features. Coupled with the lightweight network, DenseNet, for image classification and prediction. DenseNet is used to build a model of motor fault diagnosis; its structure is simple, and the calculation speed is fast. The method of using DenseNet for image feature learning can perform feature extraction on each image block of the image, providing full play to the advantages of deep learning to obtain accurate results. This research method is verified by the data of the time-varying bearing experimental device at the University of Ottawa. Through the four links of signal acquisition, feature extraction, fault identification, and prediction, a mechanical intelligent fault diagnosis system has established the state of bearing. The experimental results show that the method can accurately identify four common motor faults, with a VMD-DenseNet prediction accuracy rate of 92%. It provides a more effective method for bearing fault diagnosis and has a wide range of application prospects in fault diagnosis engineering. In the future, online and timely diagnosis can be achieved for intelligent fault diagnosis.


Author(s):  
Lu Xiong ◽  
Wei Han ◽  
Zhuoping Yu ◽  
Jian Lin ◽  
Songyun Xu

As one feasible solution of brake-by-wire systems, electro-hydraulic brake system has been made available into production recently. Electro-hydraulic brake system must work cooperatively with the hydraulic control unit of anti-lock braking system. Due to the mechanical configuration involving electric motor + reduction gear, the electro-hydraulic brake system could be stiffer in contrast to a conventional vacuum booster. That is to say, higher pressure peaks and pressure oscillation could occur during an active anti-lock braking system control. Actually, however, electro-hydraulic brake system and anti-lock braking system are produced by different suppliers considering brake systems already in production. Limited signals and operations of anti-lock braking system could be provided to the supplier of electro-hydraulic brake system. In this work, a master cylinder pressure reduction logic is designed based on speed servo system for active pressure modulation of electro-hydraulic brake system under the anti-lock braking system–triggered situation. The pressure reduction logic comprises of model-based friction compensation, feedforward and double closed-loop feedback control. The pressure closed-loop is designed as the outer loop, and the motor rotation speed closed-loop is drawn into the inner loop of feedback control. The effectiveness of the proposed controller is validated by vehicle experiment in typical braking situations. The results show that the controller remains stable against parameter uncertainties in extreme condition such as low temperature and mismatch of friction model. In contrast to the previous methods, the comparison results display the improved dynamic cooperative performance of electro-hydraulic brake system and anti-lock braking system and robustness.


2012 ◽  
Vol 190-191 ◽  
pp. 993-997
Author(s):  
Li Jie Sun ◽  
Li Zhang ◽  
Yong Bo Yang ◽  
Da Bo Zhang ◽  
Li Chun Wu

Mechanical equipment fault diagnosis occupies an important position in the industrial production, and feature extraction plays an important role in fault diagnosis. This paper analyzes various methods of feature extraction in rolling bearing fault diagnosis and classifies them into two big categories, which are methods of depending on empirical rules and experimental trials and using objective methods for screening. The former includes five methods: frequency as the characteristic parameters, multi-sensor information fusion method, rough set attribute reduction method, "zoom" method and vibration signal as the characteristic parameters. The latter includes two methods: sensitivity extraction and data mining methods to select attributes. Currently, selection methods of feature parameters depend heavily on empirical rules and experimental trials, thus extraction results are be subjected to restriction from subjective level, feature extraction in the future will develop toward objective screening direction.


2020 ◽  
Vol 11 (6) ◽  
pp. 2067-2081
Author(s):  
Christopher M. Yeomans ◽  
Robin K. Shail ◽  
Stephen Grebby ◽  
Vesa Nykänen ◽  
Maarit Middleton ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Long Zhang ◽  
Binghuan Cai ◽  
Guoliang Xiong ◽  
Jianmin Zhou ◽  
Wenbin Tu ◽  
...  

Fault diagnosis of rolling bearings is not a trivial task because fault-induced periodic transient impulses are always submerged in environmental noise as well as large accidental impulses and attenuated by transmission path. In most hybrid diagnostic methods available for rolling bearings, the problems lie in twofolds. First, most optimization indices used in the individual signal processing stage do not take the periodical characteristic of fault transient impulses into consideration. Second, the individual stages make use of different optimization indices resulting in inconsistent optimization directions and possibly an unsatisfied diagnosis. To solve these problems, a multistage fault feature extraction method of consistent optimization for rolling bearings based on correlated kurtosis (CK) is proposed where maximum correlated kurtosis deconvolution (MCKD) is employed to attenuate the influence of transmission path followed by tunable Q factor wavelet transform (TQWT) to further enhance fault features by decomposing the preprocessed signals into multiple subbands under different Q values. The major contribution of the proposed approach is to consistently use CK as an optimization index of both MCKD and TQWT. The subband signal with the maximum CK which is an index being able to measure the periodical transient impulses in vibration signal yields an envelope spectrum, from which fault diagnosis is implemented. Simulated and experimental signals verified the effectiveness and advantages of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document