scholarly journals Vibration Based Condition Monitoring of a Hydraulic Brake System through Statistical Learning Approaches: A Review

Author(s):  
R. Jegadeeshwaran ◽  
V. Sugumaran
Author(s):  
R. Jegadeeshwaran ◽  
V. Sugumaran

Hydraulic brakes in automobiles play a vital role for the safety on the road; therefore vital components in the brake system should be monitored through condition monitoring techniques. Condition monitoring of brake components can be carried out by using the vibration characteristics. The vibration signals for the different fault conditions of the brake were acquired from the fabricated hydraulic brake test setup using a piezoelectric accelerometer and a data acquisition system. Condition monitoring of brakes was studied using machine learning approaches. Through a feature extraction technique, descriptive statistical features were extracted from the acquired vibration signals. Feature classification was carried out using nested dichotomy, data near balanced nested dichotomy and class balanced nested dichotomy classifiers. A Random forest tree algorithm was used as a base classifier for the nested dichotomy (ND) classifiers. The effectiveness of the suggested techniques was studied and compared. Amongst them, class balanced nested dichotomy (CBND) with the statistical features gives better accuracy of 98.91% for the problem concerned.


2021 ◽  
Vol 1969 (1) ◽  
pp. 012050
Author(s):  
Mohit Nikhil Wagh ◽  
T M Alamelu Manghai ◽  
R Jegadeeshwaran ◽  
D Saravanakumar ◽  
N Raghukiran

2017 ◽  
Author(s):  
Xiangkun He ◽  
Xuewu Ji ◽  
Kaiming Yang ◽  
Yulong Liu ◽  
Jian WU ◽  
...  

Author(s):  
Felicitas J. Detmer ◽  
Daniel Lückehe ◽  
Fernando Mut ◽  
Martin Slawski ◽  
Sven Hirsch ◽  
...  

Author(s):  
Alamelu Manghai T. M ◽  
Jegadeeshwaran R

Vibration-based continuous monitoring system for fault diagnosis of automobile hydraulic brake system is presented in this study. This study uses a machine learning approach for the fault diagnosis study. A hydraulic brake system test rig was fabricated. The vibration signals were acquired from the brake system under different simulated fault conditions using a piezoelectric transducer. The histogram features were extracted from the acquired vibration signals. The feature selection process was carried out using a decision tree. The selected features were classified using fuzzy unordered rule induction algorithm ( FURIA ) and Repeated Incremental Pruning to Produce Error Reduction ( RIPPER ) algorithm. The classification results of both algorithms for fault diagnosis of a hydraulic brake system were presented. Compared to RIPPER and J48 decision tree, the FURIA performs better and produced 98.73 % as the classification accuracy.


Author(s):  
Snegdha Gupta ◽  
Harish Hirani

Quick response and rheological properties as a function of magnetic field are well known features of MR fluids which inspire their usage as brake materials. Controllable torque and minimum weight of brake system are the deciding functions based on which the viability of the MR brake against the conventional hydraulic brake system can be judged. The aim of this study is to optimize a multi-disk magneto-rheological brake system considering torque and weight as objective functions and geometric dimensions of conventional hydraulic brake as constraints. The electric current accounting magnetic saturation, MR gap, number of disk, thickness of disk, and outer diameter of disk have been considered as design variables. To model the behavior of MR Fluid, Bingham and Herschel Bulkley models have been compared. To implement these models in estimating the braking torque a modification in shear rate dependent component has been proposed. The overall design of MR brake has been optimized using a hybrid (Genetic algorithm plus gradient based) optimization scheme of MATLAB software.


2021 ◽  
pp. 101305
Author(s):  
Dana Rezazadegan ◽  
Shlomo Berkovsky ◽  
Juan C. Quiroz ◽  
A. Baki Kocaballi ◽  
Ying Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document