scholarly journals Effect of longitudinal epsilon-near-zero regime in dynamics of ultrashort laser pulses in hyperbolic metamaterials

2021 ◽  
Vol 2015 (1) ◽  
pp. 012098
Author(s):  
Vladimir Novikov

Abstract Optical properties of hyperbolic metamaterials (HMMs) are in stark contrast to properties of ordinary media that fuels interest to various applications of HMMs in photonics. Special attention is attributed to the epsilon-near zero regime (ENZ) of HMMs that is the spectral point in which real part of the permittivity of the HMM becomes zero. This is accompanied by the effects of field enhancement having far-reaching applications. Here we focus on the experimental and theoretical investigation of the propagation of an ultrashort laser pulse through the silver nanorod-based HMM slab in the spectral range over the ENZ. We revealed pronounced resonant change of the pulse delay in HMMs and the transition between the superluminal and slow pulse propagation at the ENZ spectral point. Observed dynamical phenomena are confirmed theoretically and attributed to unusual case when the spectral half of an ultrashort pulse has elliptical dispersion and another has the hyperbolic one. Special attention is payed to the propagation of chirped laser pulses in the HMMs.

2020 ◽  
Vol 238 ◽  
pp. 12006
Author(s):  
J.D. Pisonero ◽  
O. Varela ◽  
E. García ◽  
I. Hernández ◽  
J. Ajates ◽  
...  

An approach based on the finite-difference time-domain (FDTD) method is developed for simulating the dynamics of two ultrashort laser pulses inside a saturable absorbing media. This work discusses the results obtained using this numerical model for the prediction of the nonlinear absorbing media behaviour as well as how it affects the final double pulse combination. These results can be used to improve contrast cleaning conditions for high power laser chains and for synchronization studies, this last application was checked in the VEGA facility lab as a code validation.


Author(s):  
Gaston Edah ◽  
Aurélien Goudjo ◽  
Jamal Adetola ◽  
Marc Amour Ayela

In this work, the pulse propagation in a nonlinear dispersive optical medium is numerically investigated. The finite difference time-domain scheme of third order and periodic boundary conditions are used to solve generalized nonlinear Schr¨odinger equation governing the propagation of the pulse. As a result a discrete system of ordinary differerential equations is obtained and solved numerically by fourth order Runge-Kutta algorithm. Varied input ultrashort laser pulses are used. Accurate results of the solutions are obtained and the comparison with other results is excellent.


2009 ◽  
Vol 18 (03) ◽  
pp. 541-552
Author(s):  
HANI JASSIM KBASHI ◽  
HUSSEIN JAWAD ◽  
KAIS A. AL-NAIMEE ◽  
ROBERTO BENOCCI ◽  
PAOLO CARPEGGIANI ◽  
...  

Femtosecond laser pulse propagation in monomode optical fibers is demonstrated and investigated numerically (by simulations) and experimentally in this paper. A passively mode locked Nd:glass laser giving a pulse duration of about 200 fsec at 1053 nm wavelength and 120 mW average optical power with 100 MHz repetition rate is used in the experimental work. Numerical simulations are done by solving the nonlinear Schrödinger equation with the aid of Matlab program. The results show that self phase modulation (SPM) leads to compression of the spectral width from 5 nm to 2.1 nm after propagation of different optical powers (34, 43, 86 and 120 mW) in fibers of different length (5, 15, 35 m). The varying optical powers produced a varying phase shift. The output spectral width also changed with the fiber length at a given peak power.


Author(s):  
Isamu Miyamoto ◽  
Kristian Cvecek ◽  
Yasuhiro Okamoto ◽  
Michael Schmidt ◽  
Henry Helvajian

Author(s):  
Marcelo Bertolete Carneiro ◽  
Patrícia Alves Barbosa ◽  
Ricardo Samad ◽  
NIlson Vieira ◽  
Wagner de Rossi ◽  
...  

Author(s):  
V. Pouget ◽  
E. Faraud ◽  
K. Shao ◽  
S. Jonathas ◽  
D. Horain ◽  
...  

Abstract This paper presents the use of pulsed laser stimulation with picosecond and femtosecond laser pulses. We first discuss the resolution improvement that can be expected when using ultrashort laser pulses. Two case studies are then presented to illustrate the possibilities of the pulsed laser photoelectric stimulation in picosecond single-photon and femtosecond two-photon modes.


Sign in / Sign up

Export Citation Format

Share Document