scholarly journals Lanczos Algorithm for 2DPCA

2021 ◽  
Vol 2025 (1) ◽  
pp. 012035
Author(s):  
Xuansheng Wang ◽  
Huazhong Li ◽  
Yanbing Zhou ◽  
Hongying Zheng
Keyword(s):  
Acta Numerica ◽  
2003 ◽  
Vol 12 ◽  
pp. 267-319 ◽  
Author(s):  
Roland W. Freund

In recent years, reduced-order modelling techniques based on Krylov-subspace iterations, especially the Lanczos algorithm and the Arnoldi process, have become popular tools for tackling the large-scale time-invariant linear dynamical systems that arise in the simulation of electronic circuits. This paper reviews the main ideas of reduced-order modelling techniques based on Krylov subspaces and describes some applications of reduced-order modelling in circuit simulation.


1993 ◽  
Vol 60 (2) ◽  
pp. 358-365 ◽  
Author(s):  
R. Vale´ry Roy ◽  
P. D. Spanos

Spectral densities of the response of nonlinear systems to white noise excitation are considered. By using a formal solution of the associated Fokker-Planck-Kolmogorov equation, response spectral densities are represented by formal power series expansion for large frequencies. The coefficients of the series, known as the spectral moments, are determined in terms of first-order response statistics. Alternatively, a J-fraction representation of spectral densities can be achieved by using a generalization of the Lanczos algorithm for matrix tridiagonalization, known as the “recursion method.” Sequences of rational approximations of increasing order are obtained. They are used for numerical calculations regarding the single-well and double-well Duffing oscillators, and Van der Pol type oscillators. Digital simulations demonstrate that the proposed approach can be quite reliable over large variations of the system parameters. Further, it is quite versatile as it can be used for the determination of the spectrum of the response of a broad class of randomly excited nonlinear oscillators, with the sole prerequisite being the availability, in exact or approximate form, of the stationary probability density of the response.


1991 ◽  
Vol 16 (2) ◽  
pp. 97-105 ◽  
Author(s):  
Daniel Boley ◽  
Gene Golub
Keyword(s):  

Author(s):  
Kenneth C. Hall ◽  
Răzvan Florea ◽  
Paul J. Lanzkron

A novel technique for computing unsteady flows about turbomachinery cascades is presented. Starting with a frequency domain CFD description of unsteady aerodynamic flows, we form a large, sparse, generalized, non-Hermitian eigenvalue problem which describes the natural modes and frequencies of fluid motion about the cascade. We compute the dominant left and right eigenmodes and corresponding eigenfrequencies using a Lanczos algorithm. Then, using just a few of the resulting eigenmodes, we construct a reduced order model of the unsteady flow field. With this model, one can rapidly and accurately predict the unsteady aerodynamic loads acting on the cascade over a wide range of reduced frequencies and arbitrary modes of vibration. Moreover, the eigenmode information provides insights into the physics of unsteady flows. Finally we note that the form of the reduced order model is well suited for use in active control of aeroelastic and aeroacoustic phenomena.


Sign in / Sign up

Export Citation Format

Share Document