scholarly journals Using nondirect product Wigner D basis functions and the symmetry-adapted Lanczos algorithm to compute the ro-vibrational spectrum of CH4–H2O

2021 ◽  
Vol 154 (12) ◽  
pp. 124112
Author(s):  
Xiao-Gang Wang ◽  
Tucker Carrington
Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 253 ◽  
Author(s):  
Aditya Kamath ◽  
Sergei Manzhos

We explore the use of inverse multiquadratic (IMQ) functions as basis functions when solving the vibrational Schrödinger equation with the rectangular collocation method. The quality of the vibrational spectrum of formaldehyde (in six dimensions) is compared to that obtained using Gaussian basis functions when using different numbers of width-optimized IMQ functions. The effects of the ratio of the number of collocation points to the number of basis functions and of the choice of the IMQ exponent are studied. We show that the IMQ basis can be used with parameters where the IMQ function is not integrable. We find that the quality of the spectrum with IMQ basis functions is somewhat lower that that with a Gaussian basis when the basis size is large, and for a range of IMQ exponents. The IMQ functions are; however, advantageous when a small number of functions is used or with a small number of collocation points (e.g., when using square collocation).


Author(s):  
Aditya Kamath ◽  
Sergei Manzhos

We explore the use of inverse multiquadratic (IMQ) functions as basis functions when solving the vibrational Schrödinger equation with the rectangular collocation method. The quality of the vibrational spectrum of formaldehyde (in six dimensions) is compared to that obtained using Gaussian basis functions when using different numbers of width-optimized IMQ functions. The effects of the ratio of the number of collocation points to the number of basis functions and of the choice of the IMQ exponent are studied. We show that the IMQ basis can be used with parameters where the IMQ function is not integrable. We find that the quality of the spectrum with IMQ basis functions is somewhat lower that that with a Gaussian basis when the basis size is large and for a range of IMQ exponents. The IMQ functions are, however, advantageous when a small number of functions is used or with a small number of collocation points e.g. when using square collocation.


2004 ◽  
Vol 82 (6) ◽  
pp. 900-914 ◽  
Author(s):  
Tucker Carrington

This article reviews new methods for computing vibrational energy levels of small polyatomic molecules. The principal impediment to the calculation of energy levels is the size of the required basis set. If one uses a product basis the Hamiltonian matrix for a four-atom molecule is too large to store in core memory. We discuss iterative methods that enable one to use a product basis to compute energy levels (and spectra) without storing a Hamiltonian matrix. Despite the advantages of iterative methods it is not possible, using product basis functions, to calculate vibrational spectra of molecules with more than four atoms. A very recent method combining contracted basis functions and the Lanczos algorithm with which vibrational energy levels of methane have been computed is described. New ideas, based on exploiting preconditioning, for reducing the number of matrix-vector products required to converge energy levels of interest are also summarized.Key words: vibrational energy levels, kinetic energy operators, Lanczos algorithm, contracted basis functions, preconditioning.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S634-S634 ◽  
Author(s):  
Yun Zhou ◽  
Weiguo Ye ◽  
James R Brasic ◽  
Mohab Alexander ◽  
John Hilton ◽  
...  

1949 ◽  
Vol 46 ◽  
pp. 108-114 ◽  
Author(s):  
Forrest F. Cleveland ◽  
Arnold G. Meister
Keyword(s):  

1949 ◽  
Vol 46 ◽  
pp. 9-15 ◽  
Author(s):  
D. E. Blackwell ◽  
G. B. B. M. Sutherland
Keyword(s):  

2020 ◽  
Vol 2020 (14) ◽  
pp. 294-1-294-8
Author(s):  
Sandamali Devadithya ◽  
David Castañón

Dual-energy imaging has emerged as a superior way to recognize materials in X-ray computed tomography. To estimate material properties such as effective atomic number and density, one often generates images in terms of basis functions. This requires decomposition of the dual-energy sinograms into basis sinograms, and subsequently reconstructing the basis images. However, the presence of metal can distort the reconstructed images. In this paper we investigate how photoelectric and Compton basis functions, and synthesized monochromatic basis (SMB) functions behave in the presence of metal and its effect on estimation of effective atomic number and density. Our results indicate that SMB functions, along with edge-preserving total variation regularization, show promise for improved material estimation in the presence of metal. The results are demonstrated using both simulated data as well as data collected from a dualenergy medical CT scanner.


Sign in / Sign up

Export Citation Format

Share Document