scholarly journals Simulation Study of Structural and Electronic Properties for Adducts complexes of Bis(Acetylacetonato)oxoVandium (IV) with 4-(Para-substituted phenyl)-1,2,3-Selenadiazole

2021 ◽  
Vol 2063 (1) ◽  
pp. 012002
Author(s):  
Dalal H Alsawad ◽  
Ali A Al-Riyahee ◽  
Ali J Hameed

Abstract A series of 4-(para-substituted phenyl)-1,2,3-selenadiazole adducts of [VO(acac)2] were studied by density functional theory (DFT) calculations. The 4-(para-substituted phenyl)-1,2,3-selenadiazole molecules have been selected to be bound with vanadium atom in [VO(acac)2] through Se, N2 and N3. The resulting adducts have been investigated in two geometries (cis and trans) in order to show the effect of such structural change on the electronic properties of the studied adducts. The optimized geometries, (binding and reorganization) energies and the spatial distribution of the highest molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the adducts are presented and discussed.

2012 ◽  
Vol 507 ◽  
pp. 21-24
Author(s):  
Dong Mei Li ◽  
Zhi Hua Xiong ◽  
Qi Xin Wan

With density functional theory, the structural and electronic properties of Au3 and Au2M (M=Ag, Cu, Pd and Pt) clusters have been studied. The structural results indicate that by substituting one Au atom with M atom, the corresponding geometries are changed slightly. To investigate the electronic properties, bonding properties and highest occupied molecular orbital (HOMO) were observed. It is found that most trends in Au2Pd and Au2Pt are similar and it also happens in the other two doped clusters. In addition, the calculated mulliken overlap populations suggest that doping modify the localized electron between Au and Au atom. It is also found that the contributions from various atoms on HOMO and energies of HOMO are changed. These may make difference in the adsorption of clusters.


2018 ◽  
Vol 33 (1) ◽  
pp. 71
Author(s):  
Ali Hashem Essa ◽  
A. F. Jalbout

The structural and electronic properties of 1-(5-Hydroxymethyl - 4 –[ 5 – (5-oxo-5-piperidin- 1 -yl-penta- 1,3 -dienyl)-benzo [1,3] dioxol- 2 -yl]- tetrahydro -furan-2 -yl)-5-methy l-1Hpyrimidine-2,4dione (AHE) molecule have been investigated theoretically by performing density functional theory (DFT), and semi empirical molecular orbital calculations. The geometry of the molecule is optimized at the level of Austin Model 1 (AM1), and the electronic properties and relative energies of the molecules have been calculated by density functional theory in the ground state. The resultant dipole moment of the AHE molecule is about 2.6 and 2.3 Debyes by AM1 and DFT methods respectively, This property of AHE makes it an active molecule with its environment, that is AHE molecule may interacts with its environment strongly in solution.


2005 ◽  
Vol 16 (02) ◽  
pp. 271-280
Author(s):  
EFE YAZGAN ◽  
ŞAKIR ERKOÇ

The structural and electronic properties of ( C n Li )+ cluster ions with n =1–6 and n =20 have been investigated by performing density functional theory calculations at B3LYP level. The vibrational frequencies of the clusters are also calculated.


Sign in / Sign up

Export Citation Format

Share Document