scholarly journals Comparison and intelligent analysis of NTRU and ETRU signature algorithms for public key digital signature

2021 ◽  
Vol 2083 (4) ◽  
pp. 042009
Author(s):  
Zifeng Zhu ◽  
Fei Tian

Abstract Three American mathematicians made the NTRU public-key cryptosystem in 1996, it has a fast speed, small footprint, and also it is easy to produce key advantages. The NTRU signature algorithm is based on an integer base, the performance of the signature algorithm will change when the integer base becomes other bases. Based on the definition of “high-dimensional density” of lattice signatures, this paper chooses the ETRU signature algorithm formed by replacing the integer base with the Eisenstein integer base as a representative, and analyzes and compares the performance, security of NTRU and ETRU signature algorithms, SVP and CVP and other difficult issues, the speed of signature and verification, and the consumption of resources occupied by the algorithm.

2020 ◽  
Vol 15 (4) ◽  
pp. 197
Author(s):  
Haiqing Han ◽  
Siru Zhu ◽  
Qin Li ◽  
Xiao Wang ◽  
Yutian Lei ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wenhua Gao ◽  
Li Yang

There is no quantum election protocol that can fulfil the eight requirements of an electronic election protocol, i.e., completeness, robustness, privacy, legality, unreusability, fairness, verifiability, and receipt-freeness. To address this issue, we employ the general construction of quantum digital signature and quantum public key encryption, in conjunction with classic public key encryption, to develop and instantiate a general construction of quantum election protocol. The proposed protocol exhibits the following advantages: (i) no pre-shared key between any two participants is required, and no trusted third party or anonymous channels are required. The protocol is suitable for large-scale elections with numerous candidates and voters and accommodates the situation in which multiple voters vote simultaneously. (ii) It is the first protocol that dismantles the contradiction between verifiability and receipt-freeness in a quantum election protocol. It satisfies all eight requirements stated earlier under the physical assumptions that there exists a one-way untappable channel from the administrator to the voter and that there is no collusion between any of the three parties in the protocol. Compared with current election protocols with verifiability and receipt-freeness, this protocol relies upon fewer physical assumptions. (iii) This construction is flexible and can be instantiated into an election scheme having post-quantum security by applying cryptographic algorithms conveying post-quantum security. Moreover, utilizing quantum digital signature and public key encryption yields a good result: the transmitted ballots are in quantum states, so owing to the no-cloning theorem, ballot privacy is less likely to be compromised, even if private keys of the signature and public key encryption are leaked after the election. However, in existing election protocols employing classic digital signatures and public key encryption, ballot privacy can be easily violated if attackers obtain private keys. Thus, our construction enhances privacy.


2014 ◽  
Vol 513-517 ◽  
pp. 4509-4512
Author(s):  
Xue Dong Dong ◽  
Xin Peng Jing

In this paper, the extended ElGamal public key cryptosystem and digital signature scheme with appendix are described in the setting of the group of units of the ring.Elements of the group of units with the larger order are used as the base elements in the proposed extension instead of primitive roots used in the original scheme. Proposed schemes make periodic change of the group and base elements to provide necessary security level.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 429 ◽  
Author(s):  
Vahid Vahedi ◽  
Morteza Jafarpour ◽  
Sarka Hoskova-Mayerova ◽  
Hossein Aghabozorgi ◽  
Violeta Leoreanu-Fotea ◽  
...  

In this paper, we introduce generalized quadratic forms and hyperconics over quotient hyperfields as a generalization of the notion of conics on fields. Conic curves utilized in cryptosystems; in fact the public key cryptosystem is based on the digital signature schemes (DLP) in conic curve groups. We associate some hyperoperations to hyperconics and investigate their properties. At the end, a collection of canonical hypergroups connected to hyperconics is proposed.


2020 ◽  
Vol 15 (4) ◽  
pp. 197
Author(s):  
Yuwei Zhang ◽  
Yutian Lei ◽  
Xiao Wang ◽  
Qin Li ◽  
Siru Zhu ◽  
...  

Author(s):  
Yasuhiko IKEMATSU ◽  
Dung Hoang DUONG ◽  
Albrecht PETZOLDT ◽  
Tsuyoshi TAKAGI

Sign in / Sign up

Export Citation Format

Share Document