scholarly journals Research of Visual Synchronous Technology Based Control Method for PMSG Wind Power System

2021 ◽  
Vol 2087 (1) ◽  
pp. 012059
Author(s):  
Dongmei Xie ◽  
Changjian Li ◽  
Yanxi Jiang

Abstract Commissioned for wind power system there are two main types of generators, one is doubly fed induction generator(DFIG), the other is permanent magnetic synchronous generator(PMSG). Compared to DFIG unit, PMSG wind power system is more economical for manufacturing and maintenance. With the higher penetration rate of wind power generation in the grid, the need for the renewable power units to provide active frequency support yields relevant control characteristics in their power converters, for which the visual synchronous generator control exhibits promising features. This paper proposes a visual synchronous technology based PMSG wind power system. The simulation results verified the effectiveness of this proposed controller.

2019 ◽  
Vol 88 ◽  
pp. 258-267 ◽  
Author(s):  
C.M. Rocha-Osorio ◽  
J.S. Solís-Chaves ◽  
Lucas L. Rodrigues ◽  
J.L. Azcue Puma ◽  
A.J. Sguarezi Filho

Energies ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 904 ◽  
Author(s):  
Tiejiang Yuan ◽  
Jinjun Wang ◽  
Yuhang Guan ◽  
Zheng Liu ◽  
Xinfu Song ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7685
Author(s):  
Xiangwu Yan ◽  
Wenfei Chang ◽  
Sen Cui ◽  
Aazim Rassol ◽  
Jiaoxin Jia ◽  
...  

A large-scale power system breakdown in the United Kingdom caused blackouts in several important cities, losing about 3.2 percent of the load and affecting nearly 1 million power users on 9 August 2019. On the basis of the accident investigation report provided by the UK National Grid, the specific reasons for the sub-synchronous oscillation of Hornsea wind farm were analyzed. The Hornsea wind power system model was established by MATLAB simulation software to reproduce the accident. To solve this problem, based on the positive and negative sequence decomposition, the control strategy of grid-side converter of doubly-fed induction generator is improved to control the positive sequence voltage of the generator terminal, which can quickly recover the voltage by compensating the reactive power at the grid side. Consequently, the influence of the fault is weakened on the Hornsea wind farm system, and the sub-synchronous oscillation of the system is suppressed. The simulation results verify the effectiveness of the proposed control strategy in suppressing the sub-synchronous oscillation of weak AC wind power system after being applied to doubly-fed induction generator, which serves as a reference for studying similar problems of offshore wind power.


Sign in / Sign up

Export Citation Format

Share Document