scholarly journals Analysis of eddy current loss in magnetic coupling based on three-dimensional finite element calculation

2021 ◽  
Vol 2093 (1) ◽  
pp. 012039
Author(s):  
Xiaoyue Wang ◽  
Liang Cai ◽  
Yanqin Mao ◽  
Wanjun Guo

Abstract Considering the end effect, the three-dimensional finite element calculation model of the magnetic coupling is established. The three-dimensional distribution nephogram of the induced current and eddy current loss on the isolation cover is obtained, and the distribution trends of the two are consistent. The influence of size, material, and operating condition of magnetic coupling on eddy current loss is studied. The results show that the selection of isolation material with high resistivity and the reduction of isolation thickness are helpful to reduce the eddy current loss. The higher the rotating speed of the magnetic coupling, the greater the eddy current loss. At the same speed, the greater the load, the greater the magnetic declination, the smaller the eddy current loss. The research results can provide a reference for reducing energy loss and cooling structure design of magnetic coupling.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 157-163
Author(s):  
Koki Ito ◽  
Takahisa Kadomatsu ◽  
Kohei Obana ◽  
Kenji Nakamura

This paper deals with development of in-wheel magnetic-geared motor for walking support machines. In a previous paper, a magnetic-geared motor for a walking support machine was prototyped. However, its efficiency was low, therefore improving the efficiency is necessary for practical use. This paper presents the improving efficiency of the magnetic-geared motor from the viewpoint of torque increasing and loss reducing by using a three-dimensional finite element method (3D-FEM). In addition, supporting method of pole-pieces and eddy current loss in housing were discussed. Furthermore, the proposed motor is prototyped. The experimental results show that its efficiency is 15% higher than the previous motor. Finally, the walking support machine installed with two magnetic-geared motors is prototyped and demonstrated.









2010 ◽  
Vol 670 ◽  
pp. 466-476 ◽  
Author(s):  
Jian Li ◽  
Jung Tae Song ◽  
Yun Hyun Cho

This paper describes thermal analysis of canned induction motor for coolant pump considering eddy current loss. The electromagnetic field of a canned motor was analyzed by using the time-step finite element method, and the eddy loss was obtained. Equivalent circuit considering can loss was developed and the equitation to calculate can loss was derived from theory of conventional motor. Using the loss from electromagnetic analysis as heat source of temperature field, thermal analysis was conducted by three dimensional finite element analyses. The simulation results show good agreement with experiment data, which indicates that this method has good accuracy and reliability for dealing with thermal behavior of canned motor.



Sign in / Sign up

Export Citation Format

Share Document