scholarly journals The ground state binding energy of the closed shell nuclei with the density dependentAv18effective interaction in LOCV method

2011 ◽  
Vol 312 (9) ◽  
pp. 092043 ◽  
Author(s):  
Majid Modarres ◽  
Hodjat Mariji ◽  
Naser Rasekhinejad
1983 ◽  
Vol 28 (4) ◽  
pp. 1791-1797 ◽  
Author(s):  
M. Waroquier ◽  
J. Bloch ◽  
G. Wenes ◽  
K. Heyde

2008 ◽  
Vol 22 (12) ◽  
pp. 1923-1932
Author(s):  
JIA LIU ◽  
ZI-YU CHEN

The influence of a perpendicular magnetic field on a bound polaron near the interface of a polar–polar semiconductor with Rashba effect has been investigated. The material is based on a GaAs / Al x Ga 1-x As heterojunction and the Al concentration varying from 0.2 ≤ x ≤ 0.4 is the critical value below which the Al x Ga 1-x As is a direct band gap semiconductor.The external magnetic field strongly altered the ground state binding energy of the polaron and the Rashba spin–orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splitting of the ground state binding energy of the bound polaron. How the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity and the electron area density have been shown in this paper, taking into account the SO coupling. The contribution of the phonons are also considered. It is found that the spin-splitting states of the bound polaron are more stable, and, in the condition of weak magnetic field, the Zeeman effect can be neglected.


1989 ◽  
Vol 67 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Magne Haugen ◽  
Erlend Østgaard

The ground-state energy of spin-polarized hydrogen, deuterium, and tritium is calculated by means of a modified variational lowest order constrained-variation method, and the calculations are done for five different two-body potentials. Spin-polarized H↓ is not self-bound according to our theoretical results for the ground-state binding energy. For spin-polarized D↓, however, we obtain theoretical results for the ground-state binding energy per particle from −0.42 K at an equilibrium particle density of 0.25 σ−3 or a molar volume of 121 cm3/mol to + 0.32 K at an equilibrium particle density of 0.21 σ−3 or a molar volume of 142 cm3/mol, where σ = 3.69 Å (1 Å = 10−10 m). It is, therefore, not clear whether spin-polarized deuterium should be self-bound or not. For spin-polarized T↓, we obtain theoretical results for the ground-state binding energy per particle from −4.73 K at an equilibrium particle density of 0.41 σ−3 or a molar volume of 74 cm3/mol to −1.21 K at an equilibrium particle density of 0.28 σ−3 or a molar volume of 109 cm3/mol.


2016 ◽  
Vol 954 ◽  
pp. 149-160 ◽  
Author(s):  
F. Schulz ◽  
P. Achenbach ◽  
S. Aulenbacher ◽  
J. Beričič ◽  
S. Bleser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document