Analytic Variational Calculation of the Ground-State Binding Energy of Hydrogen in Intermediate and Intense Magnetic Fields

1974 ◽  
Vol 188 ◽  
pp. 349 ◽  
Author(s):  
Lance W. Wilson
2008 ◽  
Vol 22 (12) ◽  
pp. 1923-1932
Author(s):  
JIA LIU ◽  
ZI-YU CHEN

The influence of a perpendicular magnetic field on a bound polaron near the interface of a polar–polar semiconductor with Rashba effect has been investigated. The material is based on a GaAs / Al x Ga 1-x As heterojunction and the Al concentration varying from 0.2 ≤ x ≤ 0.4 is the critical value below which the Al x Ga 1-x As is a direct band gap semiconductor.The external magnetic field strongly altered the ground state binding energy of the polaron and the Rashba spin–orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splitting of the ground state binding energy of the bound polaron. How the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity and the electron area density have been shown in this paper, taking into account the SO coupling. The contribution of the phonons are also considered. It is found that the spin-splitting states of the bound polaron are more stable, and, in the condition of weak magnetic field, the Zeeman effect can be neglected.


1989 ◽  
Vol 67 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Magne Haugen ◽  
Erlend Østgaard

The ground-state energy of spin-polarized hydrogen, deuterium, and tritium is calculated by means of a modified variational lowest order constrained-variation method, and the calculations are done for five different two-body potentials. Spin-polarized H↓ is not self-bound according to our theoretical results for the ground-state binding energy. For spin-polarized D↓, however, we obtain theoretical results for the ground-state binding energy per particle from −0.42 K at an equilibrium particle density of 0.25 σ−3 or a molar volume of 121 cm3/mol to + 0.32 K at an equilibrium particle density of 0.21 σ−3 or a molar volume of 142 cm3/mol, where σ = 3.69 Å (1 Å = 10−10 m). It is, therefore, not clear whether spin-polarized deuterium should be self-bound or not. For spin-polarized T↓, we obtain theoretical results for the ground-state binding energy per particle from −4.73 K at an equilibrium particle density of 0.41 σ−3 or a molar volume of 74 cm3/mol to −1.21 K at an equilibrium particle density of 0.28 σ−3 or a molar volume of 109 cm3/mol.


2016 ◽  
Vol 954 ◽  
pp. 149-160 ◽  
Author(s):  
F. Schulz ◽  
P. Achenbach ◽  
S. Aulenbacher ◽  
J. Beričič ◽  
S. Bleser ◽  
...  

2016 ◽  
Vol 31 (14) ◽  
pp. 1650084 ◽  
Author(s):  
A. Armat ◽  
H. Hassanabadi

In this work, the ground state binding energy of [Formula: see text]-particle in hypernuclei is investigated by using analytical solution of non-relativistic Schrödinger equation in the presence of a generalized Woods–Saxon-type interaction. The comparison with the experimental data is motivating.


NANO ◽  
2016 ◽  
Vol 11 (03) ◽  
pp. 1650029 ◽  
Author(s):  
Wei Xiao ◽  
Jing-Lin Xiao

The properties of an electron strongly coupled to longitudinal optical (LO) phonon in RbCl parabolic quantum dot (PQD) with a hydrogen-like impurity at the center were investigated at a finite temperature. We have obtained the vibrational frequency of a strong-coupling polaron in RbCl PQD by using linear combination operator method. We then calculate the effects of temperature, the Coulombic impurity potential and the effective confinement strength on the vibrational frequency by using unitary transformation and the quantum statistics theory methods. The influences of the temperature, the Coulombic impurity potential and the effective confinement strength on the ground state energy and the ground state binding energy are also analyzed. The strengths of these quantities increase with raising temperature. The vibrational frequency is an increasing function of the Coulombic impurity potential and the effective confinement strength. The ground state energy is an increasing function of the effective confinement strength, whereas it is a decreasing one of the Coulombic impurity potential. The ground state binding energy is an increasing function of the Coulombic impurity potential, whereas it is a decayed one of the effective confinement strength.


2020 ◽  
Vol 1 ◽  
pp. 187
Author(s):  
C. G. Koutroulos ◽  
M. E. Grypeos

The Dirac equation with potentials having attractive and repulsive parts is con­ sidered in a simplified model and approximate semiempirical mass formulae for the ground state binding energy of a Λ in hypernuclei are derived and discussed.


2019 ◽  
Vol 33 (21) ◽  
pp. 1950239 ◽  
Author(s):  
Xiu-Qing Wang ◽  
Ying-Jie Chen ◽  
Jing-Lin Xiao

The ground state binding energy (E[Formula: see text]) and the mean number of LO phonons (N) of the strong-coupling magneto-polaron (SCMP) in an asymmetrical semi-exponential quantum well (ASEQW) are studied theoretically. Temperature (T) effects on E[Formula: see text] and N are acquired with the quantum statistics theory (QST). By using the Lee-Low-Pines unitary transformation (LLPUT) and linear combination operation method (LCOM), the variations of E[Formula: see text] and N with T and [Formula: see text] of magnetic field are discussed. The investigated results indicate that both T and [Formula: see text] have great influence on E[Formula: see text] and N of LO phonons.


Sign in / Sign up

Export Citation Format

Share Document