scholarly journals Statistical properties of an ideal subgrid-scale correction for Lagrangian particle tracking in turbulent channel flow

2011 ◽  
Vol 333 ◽  
pp. 012004
Author(s):  
F Bianco ◽  
S Chibbaro ◽  
C Marchioli ◽  
M V Salvetti ◽  
A Soldati
Author(s):  
Cristian Marchioli ◽  
Maurizio Picciotto ◽  
Alfredo Soldati

In this work, we study the dispersion of inertial particles in fully-developed turbulent channel flow to evaluate the relationship between particle and fluid time scales, and to identify suitable scales for parametrization of near-wall particle behavior. Direct Numerical Simulation (DNS) and Lagrangian particle tracking are used to build a complete and homogeneous dataset which covers a large target parameter space and includes statistics of particle velocity and particle concentration at steady state. Our results show that the Lagrangian integral time scale of the fluid is adequate to characterize particle wall deposition and that such fluid time scale will be different when sampled at the position of either fluid particles or inertial particles. Differences become particularly evident in the range 5 < St < 25. These observations can be crucial to improve the accuracy of engineering models for particle deposition.


2021 ◽  
Vol 123 ◽  
pp. 110346
Author(s):  
Peter Manovski ◽  
Matteo Novara ◽  
Nagendra Karthik Depuru Mohan ◽  
Reinhard Geisler ◽  
Daniel Schanz ◽  
...  

2013 ◽  
Vol 721 ◽  
pp. 541-577 ◽  
Author(s):  
Amin Rasam ◽  
Geert Brethouwer ◽  
Arne V. Johansson

AbstractIn Marstorpet al. (J. Fluid Mech., vol. 639, 2009, pp. 403–432), an explicit algebraic subgrid stress model (EASSM) for large-eddy simulation (LES) was proposed, which was shown to considerably improve LES predictions of rotating and non-rotating turbulent channel flow. In this paper, we extend that work and present a new explicit algebraic subgrid scalar flux model (EASSFM) for LES, based on the modelled transport equation of the subgrid-scale (SGS) scalar flux. The new model is derived using the same kind of methodology that leads to the explicit algebraic scalar flux model of Wikströmet al. (Phys. Fluids, vol. 12, 2000, pp. 688–702). The algebraic form is based on a weak equilibrium assumption and leads to a model that depends on the resolved strain-rate and rotation-rate tensors, the resolved scalar-gradient vector and, importantly, the SGS stress tensor. An accurate prediction of the SGS scalar flux is consequently strongly dependent on an accurate description of the SGS stresses. The new EASSFM is therefore primarily used in connection with the EASSM, since this model can accurately predict SGS stresses. The resulting SGS scalar flux is not necessarily aligned with the resolved scalar gradient, and the inherent dependence on the resolved rotation-rate tensor makes the model suitable for LES of rotating flow applications. The new EASSFM (together with the EASSM) is validated for the case of passive scalar transport in a fully developed turbulent channel flow with and without system rotation. LES results with the new model show good agreement with direct numerical simulation data for both cases. The new model predictions are also compared to those of the dynamic eddy diffusivity model (DEDM) and improvements are observed in the prediction of the resolved and SGS scalar quantities. In the non-rotating case, the model performance is studied at all relevant resolutions, showing that its predictions of the Nusselt number are much less dependent on the grid resolution and are more accurate. In channel flow with wall-normal rotation, where all the SGS stresses and fluxes are non-zero, the new model shows significant improvements over the DEDM predictions of the resolved and SGS quantities.


2019 ◽  
Vol 60 (3) ◽  
Author(s):  
Matteo Novara ◽  
Daniel Schanz ◽  
Reinhard Geisler ◽  
Sebastian Gesemann ◽  
Christina Voss ◽  
...  

2019 ◽  
Vol 31 (4) ◽  
pp. 045105 ◽  
Author(s):  
D. Dupuy ◽  
A. Toutant ◽  
F. Bataille

Sign in / Sign up

Export Citation Format

Share Document