scholarly journals An explicit algebraic model for the subgrid-scale passive scalar flux

2013 ◽  
Vol 721 ◽  
pp. 541-577 ◽  
Author(s):  
Amin Rasam ◽  
Geert Brethouwer ◽  
Arne V. Johansson

AbstractIn Marstorpet al. (J. Fluid Mech., vol. 639, 2009, pp. 403–432), an explicit algebraic subgrid stress model (EASSM) for large-eddy simulation (LES) was proposed, which was shown to considerably improve LES predictions of rotating and non-rotating turbulent channel flow. In this paper, we extend that work and present a new explicit algebraic subgrid scalar flux model (EASSFM) for LES, based on the modelled transport equation of the subgrid-scale (SGS) scalar flux. The new model is derived using the same kind of methodology that leads to the explicit algebraic scalar flux model of Wikströmet al. (Phys. Fluids, vol. 12, 2000, pp. 688–702). The algebraic form is based on a weak equilibrium assumption and leads to a model that depends on the resolved strain-rate and rotation-rate tensors, the resolved scalar-gradient vector and, importantly, the SGS stress tensor. An accurate prediction of the SGS scalar flux is consequently strongly dependent on an accurate description of the SGS stresses. The new EASSFM is therefore primarily used in connection with the EASSM, since this model can accurately predict SGS stresses. The resulting SGS scalar flux is not necessarily aligned with the resolved scalar gradient, and the inherent dependence on the resolved rotation-rate tensor makes the model suitable for LES of rotating flow applications. The new EASSFM (together with the EASSM) is validated for the case of passive scalar transport in a fully developed turbulent channel flow with and without system rotation. LES results with the new model show good agreement with direct numerical simulation data for both cases. The new model predictions are also compared to those of the dynamic eddy diffusivity model (DEDM) and improvements are observed in the prediction of the resolved and SGS scalar quantities. In the non-rotating case, the model performance is studied at all relevant resolutions, showing that its predictions of the Nusselt number are much less dependent on the grid resolution and are more accurate. In channel flow with wall-normal rotation, where all the SGS stresses and fluxes are non-zero, the new model shows significant improvements over the DEDM predictions of the resolved and SGS quantities.

Author(s):  
Makoto Tsubokura

The objective of this study is to develop the SGS stress and heat-flux models that are suitable for the dynamic procedure using FDM. The models are derived with taking the consistency of the numerical error in the procedure under consideration [1]. They are assessed a priori using the DNS data of the stably stratified turbulent channel flow. It was found that for the SGS heat-flux modeling, effect of the GS velocity gradient plays an important role for the estimation of especially the streamwise heat-flux. Therefore for the SGS heat-flux model, isotropic eddy diffusivity together with the effect of the GS velocity was finally proposed. The proposed models were also found to be insensitive to the discretized test filtering operation.


2018 ◽  
Vol 844 ◽  
pp. 297-322 ◽  
Author(s):  
Geert Brethouwer

Passive scalar transport in turbulent channel flow subject to spanwise system rotation is studied by direct numerical simulations. The Reynolds number $Re=U_{b}h/\unicode[STIX]{x1D708}$ is fixed at 20 000 and the rotation number $Ro=2\unicode[STIX]{x1D6FA}h/U_{b}$ is varied from 0 to 1.2, where $U_{b}$ is the bulk mean velocity, $h$ the half channel gap width and $\unicode[STIX]{x1D6FA}$ the rotation rate. The scalar is constant but different at the two walls, leading to steady scalar transport across the channel. The rotation causes an unstable channel side with relatively strong turbulence and turbulent scalar transport, and a stable channel side with relatively weak turbulence or laminar-like flow, weak turbulent scalar transport but large scalar fluctuations and steep mean scalar gradients. The distinct turbulent–laminar patterns observed at certain $Ro$ on the stable channel side induce similar patterns in the scalar field. The main conclusions of the study are that rotation reduces the similarity between the scalar and velocity field and that the Reynolds analogy for scalar-momentum transport does not hold for rotating turbulent channel flow. This is shown by a reduced correlation between velocity and scalar fluctuations, and a strongly reduced turbulent Prandtl number of less than 0.2 on the unstable channel side away from the wall at higher $Ro$. On the unstable channel side, scalar scales become larger than turbulence scales according to spectra and the turbulent scalar flux vector becomes more aligned with the mean scalar gradient owing to rotation. Budgets in the governing equations of the scalar energy and scalar fluxes are presented and discussed as well as other statistics relevant for turbulence modelling.


2019 ◽  
Vol 31 (4) ◽  
pp. 045105 ◽  
Author(s):  
D. Dupuy ◽  
A. Toutant ◽  
F. Bataille

Author(s):  
Kyoungyoun Kim ◽  
Radhakrishna Sureshkumar

A direct numerical simulation (DNS) of viscoelastic turbulent channel flow with the FENE-P model was carried out to investigate turbulent heat transfer mechanism of polymer drag-reduced flows. The configuration was a fully-developed turbulent channel flow with uniform heat flux imposed on both walls. The temperature was considered as a passive scalar. The Reynolds number based on the friction velocity (uτ) and channel half height (δ) is 125 and Prandtl number is 5. Consistently with the previous experimental observations, the present DNS results show that the heat-transfer coefficient was reduced at a rate faster than the accompanying drag reduction rate. Statistical quantities such as root-mean-square temperature fluctuations and turbulent heat fluxes were obtained and compared with those of a Newtonian fluid flow. Budget terms of the turbulent heat fluxes were also presented.


1992 ◽  
Vol 114 (3) ◽  
pp. 598-606 ◽  
Author(s):  
N. Kasagi ◽  
Y. Tomita ◽  
A. Kuroda

A direct numerical simulation (DNS) of the fully developed thermal field in a two-dimensional turbulent channel flow of air was carried out. The isoflux condition was imposed on the two walls so that the local mean temperature increased linearly in the streamwise direction. With any buoyancy effect neglected, temperature was considered as a passive scalar. The computation was executed on 1,589,248 grid points by using a spectral method. The statistics obtained were root-mean-square temperature fluctuations, turbulent heat fluxes, turbulent Prandtl number, and dissipation time scales. They agreed fairly well with existing experimental and numerical simulation data. Each term in the budget equations of temperature variance, its dissipation rate, and turbulent heat fluxes was also calculated. It was found that the temperature fluctuation θ′ was closely correlated with the streamwise velocity fluctuation u′, particularly in the near-wall region. Hence, the distribution of budget terms for the streamwise and wall-normal heat fluxes, u′θ′ and v′θ′, were very similar to those for the two Reynolds stress components, u′u′ and u′v′.


Sign in / Sign up

Export Citation Format

Share Document