scholarly journals The isospin dependence of the nuclear force and its impact on the many-body system

2015 ◽  
Vol 580 ◽  
pp. 012004
Author(s):  
F Sammarruca ◽  
L White ◽  
B Chen
Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 984
Author(s):  
Regina Finsterhölzl ◽  
Manuel Katzer ◽  
Andreas Knorr ◽  
Alexander Carmele

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.


1972 ◽  
Vol 50 (14) ◽  
pp. 1614-1618 ◽  
Author(s):  
N. N. Wong ◽  
M. Razavy

A two-body transparent potential, which produces no observable phase shift in two-particle scattering, is constructed explicitly. This potential is used to calculate the energy of infinite nuclear matter by applying the perturbation theory and its effects on the many-body system are investigated.


2018 ◽  
Vol 27 (05) ◽  
pp. 1850039 ◽  
Author(s):  
Giampaolo Co’ ◽  
Stefano De Leo

The Lipkin–Meshkov–Glick is a simple, but not trivial, model of a quantum many-body system which allows us to solve the many-body Schrödinger equation without making any approximation. The model, which in its unperturbed case is composed only by two energy levels, includes two interacting terms. A first one, the [Formula: see text] interaction, which promotes or degrades pairs of particles, and a second one, the [Formula: see text] interaction, which scatters one particle in the upper and another in the lower energy level. In comparing this model with other approximation methods, the [Formula: see text] term interaction is often set to zero. In this paper, we show how the presence of this interaction changes the global structure of the system, generates degeneracies between the various eigenstates and modifies the energy eigenvalues structure. We present analytical solutions for systems of two and three particles and, for some specific cases, also for four, six and eight particles. The solutions for systems with more than eight particles are only numerical but their behavior can be well understood by considering the extrapolations of the analytical results. Of particular interest is the study of how the [Formula: see text] interaction affects the energy gap between the ground state and the first-excited state.


1985 ◽  
Vol 436 (4) ◽  
pp. 593-620 ◽  
Author(s):  
W. Bentz ◽  
A. Arima ◽  
H. Hyuga ◽  
K. Shimizu ◽  
K. Yazaki

Sign in / Sign up

Export Citation Format

Share Document