scholarly journals Computations and generation of elements on the Hopf algebra of Feynman graphs

2015 ◽  
Vol 608 ◽  
pp. 012065
Author(s):  
Michael Borinsky
Keyword(s):  
2021 ◽  
pp. 76-94
Author(s):  
Adrian Tanasa

We have seen in the previous chapter some of the non-trivial interplay between analytic combinatorics and QFT. In this chapter, we illustrate how yet another branch of combinatorics, algebraic combinatorics, interferes with QFT. In this chapter, after a brief algebraic reminder in the first section, we introduce in the second section the Connes–Kreimer Hopf algebra of Feynman graphs and we show its relation with the combinatorics of QFT perturbative renormalization. We then study the algebra's Hochschild cohomology in relation with the combinatorial Dyson–Schwinger equation in QFT. In the fourth section we present a Hopf algebraic description of the so-called multi-scale renormalization (the multi-scale approach to the perturbative renormalization being the starting point for the constructive renormalization programme).


1995 ◽  
Vol 101 (1) ◽  
pp. 77-90 ◽  
Author(s):  
William R. Schmitt
Keyword(s):  

Author(s):  
UWE FRANZ

We show how classical Markov processes can be obtained from quantum Lévy processes. It is shown that quantum Lévy processes are quantum Markov processes, and sufficient conditions for restrictions to subalgebras to remain quantum Markov processes are given. A classical Markov process (which has the same time-ordered moments as the quantum process in the vacuum state) exists whenever we can restrict to a commutative subalgebra without losing the quantum Markov property.8 Several examples, including the Azéma martingale, with explicit calculations are presented. In particular, the action of the generator of the classical Markov processes on polynomials or their moments are calculated using Hopf algebra duality.


Sign in / Sign up

Export Citation Format

Share Document