algebraic combinatorics
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 25)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Andries E. Brouwer ◽  
H. Van Maldeghem

Strongly regular graphs lie at the intersection of statistical design, group theory, finite geometry, information and coding theory, and extremal combinatorics. This monograph collects all the major known results together for the first time in book form, creating an invaluable text that researchers in algebraic combinatorics and related areas will refer to for years to come. The book covers the theory of strongly regular graphs, polar graphs, rank 3 graphs associated to buildings and Fischer groups, cyclotomic graphs, two-weight codes and graphs related to combinatorial configurations such as Latin squares, quasi-symmetric designs and spherical designs. It gives the complete classification of rank 3 graphs, including some new constructions. More than 100 graphs are treated individually. Some unified and streamlined proofs are featured, along with original material including a new approach to the (affine) half spin graphs of rank 5 hyperbolic polar spaces.


10.37236/9469 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Jozefien D'haeseleer ◽  
Ferdinand Ihringer ◽  
Jonathan Mannaert ◽  
Leo Storme

We study Cameron-Liebler $k$-sets in the affine geometry, so sets of $k$-spaces in $\mathrm{AG}(n,q)$. This generalizes research on Cameron-Liebler $k$-sets in the projective geometry $\mathrm{PG}(n,q)$. Note that in algebraic combinatorics, Cameron-Liebler $k$-sets of $\mathrm{AG}(n,q)$ correspond to certain equitable bipartitions of the association scheme of $k$-spaces in $\mathrm{AG}(n,q)$, while in the analysis of Boolean functions, they correspond to Boolean degree $1$ functions of $\mathrm{AG}(n,q)$. We define Cameron-Liebler $k$-sets in $\mathrm{AG}(n,q)$ by intersection properties with $k$-spreads and show the equivalence of several definitions. In particular, we investigate the relationship between Cameron-Liebler $k$-sets in $\mathrm{AG}(n,q)$ and $\mathrm{PG}(n,q)$. As a by-product, we calculate the character table of the association scheme of affine lines. Furthermore, we characterize the smallest examples of Cameron-Liebler $k$-sets. This paper focuses on $\mathrm{AG}(n,q)$ for $n > 3$, while the case for Cameron-Liebler line classes in $\mathrm{AG}(3,q)$ was already treated separately.


10.37236/9621 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Margaret Bayer ◽  
Bennet Goeckner ◽  
Su Ji Hong ◽  
Tyrrell McAllister ◽  
McCabe Olsen ◽  
...  

Given a family of lattice polytopes, two common questions in Ehrhart Theory are determining when a polytope has the integer decomposition property and determining when a polytope is reflexive. While these properties are of independent interest, the confluence of these properties is a source of active investigation due to conjectures regarding the unimodality of the $h^\ast$-polynomial. In this paper, we consider the Newton polytopes arising from two families of polynomials in algebraic combinatorics: Schur polynomials and inflated symmetric Grothendieck polynomials. In both cases, we prove that these polytopes have the integer decomposition property by using the fact that both families of polynomials have saturated Newton polytope. Furthermore, in both cases, we provide a complete characterization of when these polytopes are reflexive. We conclude with some explicit formulas and unimodality implications of the $h^\ast$-vector in the case of Schur polynomials.


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Siddhartha Sahi ◽  
Jasper V. Stokman ◽  
Vidya Venkateswaran

AbstractWe construct a family of representations of affine Hecke algebras, which depend on a number of auxiliary parameters $$g_i$$ g i , and which we refer to as metaplectic representations. We realize these representations as quotients of certain parabolically induced modules, and we apply the method of Baxterization (localization) to obtain actions of corresponding Weyl groups on rational functions on the torus. Our construction both generalizes and provides a conceptual proof of earlier results of Chinta, Gunnells, and Puskas, which had depended on a crucial computer verification. A key motivation is that when the parameters $$g_i$$ g i are specialized to certain Gauss sums, the resulting representation and its localization arise naturally in the consideration of p-parts of Weyl group multiple Dirichlet series. In this special case, similar results have been previously obtained in the literature by the study of Iwahori Whittaker functions for principal series of metaplectic covers of reductive p-adic groups. However this technique is not available for generic parameters $$g_i$$ g i . It turns out that the metaplectic representations can be extended to the double affine Hecke algebra, where they share many important properties with Cherednik’s basic polynomial representation, which they generalize. This allows us to introduce families of metaplectic polynomials, which depend on the $$g_i$$ g i , and which generalize Macdonald polynomials. In this paper we discuss in some detail the situation for type A, which is of considerable interest in algebraic combinatorics. We postpone some of the proofs, as well as a discussion of other types, to the sequel.


2021 ◽  
pp. 76-94
Author(s):  
Adrian Tanasa

We have seen in the previous chapter some of the non-trivial interplay between analytic combinatorics and QFT. In this chapter, we illustrate how yet another branch of combinatorics, algebraic combinatorics, interferes with QFT. In this chapter, after a brief algebraic reminder in the first section, we introduce in the second section the Connes–Kreimer Hopf algebra of Feynman graphs and we show its relation with the combinatorics of QFT perturbative renormalization. We then study the algebra's Hochschild cohomology in relation with the combinatorial Dyson–Schwinger equation in QFT. In the fourth section we present a Hopf algebraic description of the so-called multi-scale renormalization (the multi-scale approach to the perturbative renormalization being the starting point for the constructive renormalization programme).


2021 ◽  
pp. 121-165
Author(s):  
Adrian Tanasa

This chapter is the first chapter of the book dedicated to the study of the combinatorics of various quantum gravity approaches. After a brief introductory section to quantum gravity, we shortly mention the main candidates for a quantum theory of gravity: string theory, loop quantum gravity, and group field theory (GFT), causal dynamical triangulations, matrix models. The next sections introduce some GFT models such as the Boulatov model, the colourable and the multi-orientable model. The saddle point method for some specific GFT Feynman integrals is presented in the fifth section. Finally, some algebraic combinatorics results are presented: definition of an appropriate Conne–Kreimer Hopf algebra describing the combinatorics of the renormalization of a certain tensor GFT model (the so-called Ben Geloun–Rivasseau model) and the use of its Hochschild cohomology for the study of the combinatorial Dyson–Schwinger equation of this specific model.


Author(s):  
Adrian Tanasa

After briefly presenting (for the physicist) some notions frequently used in combinatorics (such as graphs or combinatorial maps) and after briefly presenting (for the combinatorialist) the main concepts of quantum field theory (QFT), the book shows how algebraic combinatorics can be used to deal with perturbative renormalisation (both in commutative and non-commutative quantum field theory), how analytic combinatorics can be used for QFT issues (again, for both commutative and non-commutative QFT), how Grassmann integrals (frequently used in QFT) can be used to proCve new combinatorial identities (generalizing the Lindström–Gessel–Viennot formula), how combinatorial QFT can bring a new insight on the celebrated Jacobian conjecture (which concerns global invertibility of polynomial systems) and so on. In the second part of the book, matrix models, and tensor models are presented to the reader as QFT models. Several tensor model results (such as the implementation of the large N limit and of the double-scaling limit for various such tensor models, N being here the size of the tensor) are then exposed. These results are natural generalizations of results extensively used by theoretical physicists in the study of matrix models and they are obtained through intensive use of combinatorial techniques (this time mainly enumerative techniques). The last part of the book is dedicated to the recently discovered relation between tensor models and the holographic Sachdev–Ye–Kitaev model, model which has been extensively studied in the last years by condensed matter and by high-energy physicists.


Sign in / Sign up

Export Citation Format

Share Document