scholarly journals A Feature Extraction Method for Fault Classification of Rolling Bearing based on PCA

2015 ◽  
Vol 628 ◽  
pp. 012079 ◽  
Author(s):  
Fengtao Wang ◽  
Jian Sun ◽  
Dawen Yan ◽  
Shenghua Zhang ◽  
Liming Cui ◽  
...  
2016 ◽  
Vol 28 (11) ◽  
pp. 3153-3161 ◽  
Author(s):  
Yong Zhang ◽  
Xiaomin Ji ◽  
Bo Liu ◽  
Dan Huang ◽  
Fuding Xie ◽  
...  

2020 ◽  
Vol 163 ◽  
pp. 107224 ◽  
Author(s):  
Varun Bajaj ◽  
Sachin Taran ◽  
Smith K. Khare ◽  
Abdulkadir Sengur

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Qingbo He ◽  
Xiaoxi Ding ◽  
Yuanyuan Pan

Machine fault classification is an important task for intelligent identification of the health patterns for a mechanical system being monitored. Effective feature extraction of vibration data is very critical to reliable classification of machine faults with different types and severities. In this paper, a new method is proposed to acquire the sensitive features through a combination of local discriminant bases (LDB) and locality preserving projections (LPP). In the method, the LDB is employed to select the optimal wavelet packet (WP) nodes that exhibit high discrimination from a redundant WP library of wavelet packet transform (WPT). Considering that the obtained discriminatory features on these selected nodes characterize the class pattern in different sensitivity, the LPP is then applied to address mining inherent class pattern feature embedded in the raw features. The proposed feature extraction method combines the merits of LDB and LPP and extracts the inherent pattern structure embedded in the discriminatory feature values of samples in different classes. Therefore, the proposed feature not only considers the discriminatory features themselves but also considers the dynamic sensitive class pattern structure. The effectiveness of the proposed feature is verified by case studies on vibration data-based classification of bearing fault types and severities.


2020 ◽  
Author(s):  
Foroogh Shamsi ◽  
Ali Haddad ◽  
Laleh Najafizadeh

AbstractObjectiveClassification of electroencephalography (EEG) signals with high accuracy using short recording intervals has been a challenging problem in developing brain computer interfaces (BCIs). This paper presents a novel feature extraction method for EEG recordings to tackle this problem.ApproachThe proposed approach is based on the concept that the brain functions in a dynamic manner, and utilizes dynamic functional connectivity graphs. The EEG data is first segmented into intervals during which functional networks sustain their connectivity. Functional connectivity networks for each identified segment are then localized, and graphs are constructed, which will be used as features. To take advantage of the dynamic nature of the generated graphs, a Long Short Term Memory (LSTM) classifier is employed for classification.Main resultsFeatures extracted from various durations of post-stimulus EEG data associated with motor execution and imagery tasks are used to test the performance of the classifier. Results show an average accuracy of 85.32% about only 500 ms after stimulus presentation.SignificanceOur results demonstrate, for the first time, that using the proposed feature extraction method, it is possible to classify motor tasks from EEG recordings using a short interval of the data in the order of hundreds of milliseconds (e.g. 500 ms).This duration is considerably shorter than what has been reported before. These results will have significant implications for improving the effectiveness and the speed of BCIs, particularly for those used in assistive technologies.


Sign in / Sign up

Export Citation Format

Share Document