dynamic functional connectivity
Recently Published Documents


TOTAL DOCUMENTS

395
(FIVE YEARS 253)

H-INDEX

32
(FIVE YEARS 12)

2022 ◽  
Vol 15 ◽  
Author(s):  
Lin Ma ◽  
Tengfei Yuan ◽  
Wei Li ◽  
Lining Guo ◽  
Dan Zhu ◽  
...  

Autism spectrum disorders (ASDs) are a group of heterogeneous neurodevelopmental disorders that are highly heritable and are associated with impaired dynamic functional connectivity (DFC). However, the molecular mechanisms behind DFC alterations remain largely unknown. Eighty-eight patients with ASDs and 87 demographically matched typical controls (TCs) from the Autism Brain Imaging Data Exchange II database were included in this study. A seed-based sliding window approach was then performed to investigate the DFC changes in each of the 29 seeds in 10 classic resting-state functional networks and the whole brain. Subsequently, the relationships between DFC alterations in patients with ASDs and their symptom severity were assessed. Finally, transcription-neuroimaging association analyses were conducted to explore the molecular mechanisms of DFC disruptions in patients with ASDs. Compared with TCs, patients with ASDs showed significantly increased DFC between the right dorsolateral prefrontal cortex (DLPFC) and left fusiform/lingual gyrus, between the DLPFC and the superior temporal gyrus, between the right frontal eye field (FEF) and left middle frontal gyrus, between the FEF and the right angular gyrus, and between the left intraparietal sulcus and the right middle temporal gyrus. Moreover, significant relationships between DFC alterations and symptom severity were observed. Furthermore, the genes associated with DFC changes in ASDs were identified by performing gene-wise across-sample spatial correlation analysis between gene expression extracted from six donors’ brain of the Allen Human Brain Atlas and case-control DFC difference. In enrichment analysis, these genes were enriched for processes associated with synaptic signaling and voltage-gated ion channels and calcium pathways; also, these genes were highly expressed in autistic disorder, chronic alcoholic intoxication and several disorders related to depression. These results not only demonstrated higher DFC in patients with ASDs but also provided novel insight into the molecular mechanisms underlying these alterations.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Heng-Le Wei ◽  
Tian Tian ◽  
Gang-Ping Zhou ◽  
Jin-Jin Wang ◽  
Xi Guo ◽  
...  

Background. Visual symptoms are common in patients with migraine, even in interictal periods. The purpose was to assess the association between dynamic functional connectivity (dFC) of the visual cortex and clinical characteristics in migraine without aura (MwoA) patients. Methods. We enrolled fifty-five MwoA patients as well as fifty gender- and age-matched healthy controls. Regional visual cortex alterations were investigated using regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF). Then, significant regions were selected as seeds for conducting dFC between the visual cortex and the whole brain. Results. Relative to healthy controls, MwoA patients exhibited decreased ReHo and ALFF values in the right lingual gyrus (LG) and increased ALFF values in the prefrontal cortex. The right LG showed abnormal dFC within the visual cortex and with other core brain networks. Additionally, ReHo values for the right LG were correlated with duration of disease and ALFF values of the right inferior frontal gyrus and middle frontal gyrus were correlated with headache frequency and anxiety scores, respectively. Moreover, the abnormal dFC of the right LG with bilateral cuneus was positively correlated with anxiety scores. Conclusions. The dFC abnormalities of the visual cortex may be involved in pain integration with multinetworks and associated with anxiety disorder in episodic MwoA patients.


2022 ◽  
Vol 17 (8) ◽  
pp. 0
Author(s):  
Cui Zhao ◽  
Wei-Jie Huang ◽  
Feng Feng ◽  
Bo Zhou ◽  
Hong-Xiang Yao ◽  
...  

2022 ◽  
Vol 417 ◽  
pp. 113618
Author(s):  
Yadong Liu ◽  
Xi Ren ◽  
Mei Zeng ◽  
Jiwen Li ◽  
Xiaolin Zhao ◽  
...  

2021 ◽  
pp. 1-12
Author(s):  
Jianlin Wang ◽  
Pan Wang ◽  
Yuan Jiang ◽  
Zedong Wang ◽  
Hong Zhang ◽  
...  

Background: The hippocampus with varying degrees of atrophy was a crucial neuroimaging feature resulting in the declining memory and cognitive function in Alzheimer’s disease (AD). However, the abnormal dynamic functional connectivity (DFC) in both white matter (WM) and gray matter (GM) from the left and right hippocampus remains unclear. Objective: To explore the abnormal DFC within WM and GM from the left and right hippocampus across the different stages of AD. Methods: Current study employed the OASIS-3 dataset including 43 mild cognitive impairment (MCI), 71 pre-mild cognitive impairment (pre-MCI), and matched 87 normal cognitive (NC). Adopting the FMRIB’s Integrated Registration and Segmentation Tool, we obtained the left and right hippocampus mask. Based on above hippocampus mask as seed point, we calculated the DFC between left/right hippocampus and all voxel time series within whole brain. One-way ANOVA analysis was performed to estimate the abnormal DFC among MCI, pre-MCI, and NC groups. Results: We found that MCI and pre-MCI groups showed the common abnormalities of DFC in the Temporal_Mid_L, Cingulum_Mid_L, and Thalamus_L. Specific abnormalities were found in the Cerebelum_9_L and Precuneus of MCI group and Vermis_8 and Caudate_L of pre-MCI group. In addition, we found that DFC within WM regions also showed the common low DFC for the Cerebellum anterior lobe-WM, Corpus callosum, and Frontal lobe-WM in MCI and pre-MCI group. Conclusion: Our findings provided a novel information for discover the pathophysiological mechanisms of AD and indicate WM lesions were also an important cause of cognitive decline in AD.


2021 ◽  
Author(s):  
Anders S Olsen ◽  
Anders Lykkebo-Valloee ◽  
Brice Ozenne ◽  
Martin K Madsen ◽  
Dea Siggaard Stenbaek ◽  
...  

Background: Psilocin, the neuroactive metabolite of psilocybin, is a serotonergic psychedelic that induces an acute altered state of consciousness, evokes lasting changes in mood and personality in healthy individuals, and has potential as an antidepressant treatment. Examining the acute effects of psilocin on resting-state dynamic functional connectivity implicates network-level connectivity motifs that may underlie acute and lasting behavioral and clinical effects. Aim: Evaluate the association between resting-state dynamic functional connectivity (dFC) characteristics and plasma psilocin level (PPL) and subjective drug intensity (SDI) before and right after intake of a psychedelic dose of psilocybin in healthy humans. Methods: Fifteen healthy individuals completed the study. Before and at multiple time points after psilocybin intake, we acquired 10-minute resting-state blood-oxygen-level-dependent functional magnetic resonance imaging scans. Leading Eigenvector Dynamics Analysis (LEiDA) and diametrical clustering were applied to estimate discrete, sequentially active brain states. We evaluated associations between the fractional occurrence of brain states during a scan session and PPL and SDI using linear mixed-effects models. We examined associations between brain state dwell time and PPL and SDI using frailty Cox proportional hazards survival analysis. Results: Fractional occurrences for two brain states characterized by lateral frontoparietal and medial fronto-parietal-cingulate coherence were statistically significantly negatively associated with PPL and SDI. Dwell time for these brain states was negatively associated with SDI and, to a lesser extent, PPL. Conversely, fractional occurrence and dwell time of a fully connected brain state was positively associated with PPL and SDI. Conclusion: Our findings suggest that the acute perceptual psychedelic effects induced by psilocybin may stem from drug-level associated decreases in the occurrence and duration of lateral and medial frontoparietal connectivity motifs in exchange for increases in a uniform connectivity structure. We apply and argue for a modified approach to modeling eigenvectors produced by LEiDA that more fully acknowledges their underlying structure. Together these findings contribute to a more comprehensive neurobiological framework underlying acute effects of serotonergic psychedelics.


2021 ◽  
Author(s):  
Arthur P C Spencer ◽  
Marc Goodfellow

Dynamic functional connectivity (dFC) analysis of resting-state fMRI data is commonly per- formed by calculating sliding-window correlations (SWC), followed by k-means clustering in order to assign each window to a given state. Studies using synthetic data have shown that k-means per- formance is highly dependent on sliding window parameters and signal-to-noise ratio. Additionally, sources of heterogeneity between subjects may affect the accuracy of group-level clustering, thus affecting measurements of dFC state temporal properties such as dwell time and fractional occu- pancy. This may result in spurious conclusions regarding differences between groups (e.g. when comparing a clinical population to healthy controls). Therefore, is it important to quantify the ability of k-means to estimate dFC state temporal properties when applied to cohorts of multiple subjects, and to explore ways in which clustering performance can be maximised. Here, we explore the use of dimensionality reduction methods prior to clustering in order to map high-dimensional data to a lower dimensional space, providing salient features to the subse- quent clustering step. We assess the use of deep autoencoders for feature selection prior to applying k-means clustering to the encoded data. We compare this deep clustering method to feature selec- tion using principle component analysis (PCA), uniform manifold approximation and projection (UMAP), as well as applying k-means to the original feature space using either L1 or L2 distance. We provide extensive quantitative evaluation of clustering performance using synthetic datasets, representing data from multiple heterogeneous subjects. In synthetic data we find that deep clus- tering gives the best performance, while other approaches are often insufficient to capture temporal properties of dFC states. We then demonstrate the application of each method to real-world data from human subjects and show that the choice of feature selection method has a significant effect on group-level measurements of state temporal properties. We therefore advocate for the use of deep clustering as a precursor to clustering in dFC.


Sign in / Sign up

Export Citation Format

Share Document