scholarly journals A comparison of fatigue loads of wind turbine resulting from a non-Gaussian turbulence model vs. standard ones

2007 ◽  
Vol 75 ◽  
pp. 012070 ◽  
Author(s):  
H Gontier ◽  
A P Schaffarczyk ◽  
D Kleinhans ◽  
R Friedrich
2019 ◽  
Vol 4 (4) ◽  
pp. 581-594 ◽  
Author(s):  
Carl Michael Schwarz ◽  
Sebastian Ehrich ◽  
Joachim Peinke

Abstract. The importance of a high-order statistical feature of wind, which is neglected in common wind models, is investigated: non-Gaussian distributed wind velocity increments related to the intermittency of turbulence and their impact on wind turbine dynamics and fatigue loads are the focus. Gaussian and non-Gaussian synthetic wind fields obtained from a continuous-time random walk model are compared and fed to a common aero-servo-elastic model of a wind turbine employing blade element momentum (BEM) aerodynamics. It is discussed why and how the effect of the non-Gaussian increment statistics has to be isolated. This is achieved by assuring that both types feature equivalent probability density functions, spectral properties and coherence, which makes them indistinguishable based on wind characterizations of common design guidelines. Due to limitations in the wind field genesis, idealized spatial correlations are considered. Three examples with idealized; differently sized wind structures are presented. A comparison between the resulting wind turbine loads is made. For the largest wind structure sizes, differences in the fatigue loads between intermittent and Gaussian are observed. These are potentially relevant in a wind turbine certification context. Subsequently, the dependency of this intermittency effect on the field's spatial variation is discussed. Towards very small structured fields, the effect vanishes.


2019 ◽  
Author(s):  
Carl Michael Schwarz ◽  
Sebastian Ehrich ◽  
Joachim Peinke

Abstract. The importance of a high order statistical feature of wind, which is neglected in common wind models, is investigated: Non-Gaussian distributed wind velocity increments related to the intermittency of turbulence and their impact on wind turbines dynamics and fatigue loads are in the focus. Two types of synthetic wind fields obtained from a Continuous-Time-Random Walk model are compared and fed to a common Blade-Element/Momentum theory based aero-servo-elastic wind turbine model. It is discussed why and how the effect of the non-Gaussian increment statistics has to be isolated. This is achieved by assuring that both types feature equivalent probability density functions, spectral properties and coherence, which makes them indistinguishable based on wind characterizations of common design guidelines. Due to limitations in the wind field genesis idealized spatial correlations are considered. Three examples with idealized, differently sized wind structures are presented. A comparison between the resulting wind turbine loads is made. For the largest wind structure sizes differences in the fatigue loads between intermittent and Gaussian are observed. These are potentially relevant in a wind turbine certification context. Subsequently, the dependency of this intermittency effect on the field's spatial variation is discussed. Towards very small structured fields the effect vanishes.


2007 ◽  
Vol 75 ◽  
pp. 012061 ◽  
Author(s):  
Peter Frohboese ◽  
Andreas Anders
Keyword(s):  

2020 ◽  
Vol 146 ◽  
pp. 87-98 ◽  
Author(s):  
Anup KC ◽  
Jonathan Whale ◽  
Samuel P. Evans ◽  
Philip D. Clausen

2019 ◽  
Vol 19 (4) ◽  
pp. 1092-1103 ◽  
Author(s):  
Pengfei Liu ◽  
Dong Xu ◽  
Jingguo Li ◽  
Zhiping Chen ◽  
Shuaibang Wang ◽  
...  

This article studies experimentally the damage behaviors of a 59.5-m-long composite wind turbine blade under accelerated fatigue loads using acoustic emission technique. First, the spectral analysis using the fast Fourier transform is used to study the components of acoustic emission signals. Then, three important objectives including the attenuation behaviors of acoustic emission waves, the arrangement of sensors as well as the detection and positioning of defect sources in the composite blade by developing the time-difference method among different acoustic emission sensors are successfully reached. Furthermore, the clustering analysis using the bisecting K-means method is performed to identify different damage modes for acoustic emission signal sources. This work provides a theoretical and technique support for safety precaution and maintaining of in-service blades.


2016 ◽  
Vol 90 ◽  
pp. 352-361 ◽  
Author(s):  
Henrik Stensgaard Toft ◽  
Lasse Svenningsen ◽  
John Dalsgaard Sørensen ◽  
Wolfgang Moser ◽  
Morten Lybech Thøgersen

Sign in / Sign up

Export Citation Format

Share Document