scholarly journals The nature of three dimensions: Non-local behavior in the three-dimensional (3D) Ising model

2017 ◽  
Vol 827 ◽  
pp. 012001 ◽  
Author(s):  
Z.D. Zhang
Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 776
Author(s):  
Osamu Suzuki ◽  
Zhidong Zhang

A method of the Riemann–Hilbert problem is applied for Zhang’s conjecture 1 proposed in Philo. Mag. 87 (2007) 5309 for a ferromagnetic three-dimensional (3D) Ising model in the zero external field and the solution to the Zhang’s conjecture 1 is constructed by use of the monoidal transform. At first, the knot structure of the ferromagnetic 3D Ising model in the zero external field is determined and the non-local behavior of the ferromagnetic 3D Ising model can be described by the non-trivial knot structure. A representation from the knot space to the Clifford algebra of exponential type is constructed, and the partition function of the ferromagnetic 3D Ising model in the zero external field can be obtained by this representation (Theorem I). After a realization of the knots on a Riemann surface of hyperelliptic type, the monodromy representation is realized from the representation. The Riemann–Hilbert problem is formulated and the solution is obtained (Theorem II). Finally, the monoidal transformation is introduced for the solution and the trivialization of the representation is constructed (Theorem III). By this, we can obtain the desired solution to the Zhang’s conjecture 1 (Main Theorem). The present work not only proves the Zhang’s conjecture 1, but also shows that the 3D Ising model is a good platform for studying in deep the mathematical structure of a physical many-body interacting spin system and the connections between algebra, topology, and geometry.


2015 ◽  
Vol 29 (32) ◽  
pp. 1550203 ◽  
Author(s):  
George Savvidy

In this paper we review a recently suggested generalization of the Feynman path integral to an integral over random surfaces. The proposed action is proportional to the linear size of the random surfaces and is called gonihedric. The convergence and the properties of the partition function are analyzed. The model can also be formulated as a spin system with identical partition functions. The spin system represents a generalization of the Ising model with ferromagnetic, antiferromagnetic and quartic interactions. Higher symmetry of the model allows to construct dual spin systems in three and four dimensions. In three dimensions the transfer matrix describes the propagation of closed loops and we found its exact spectrum. It is a unique exact solution of the three-dimensional statistical spin system. In three and four dimensions, the system exhibits the second-order phase transitions. The gonihedric spin systems have exponentially degenerated vacuum states separated by the potential barriers and can be used as a storage of binary information.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2936
Author(s):  
Zhidong Zhang ◽  
Osamu Suzuki

A method of the Riemann–Hilbert problem is employed for Zhang’s conjecture 2 proposed in Philo. Mag. 87 (2007) 5309 for a ferromagnetic three-dimensional (3D) Ising model in a zero external magnetic field. In this work, we first prove that the 3D Ising model in the zero external magnetic field can be mapped to either a (3 + 1)-dimensional ((3 + 1)D) Ising spin lattice or a trivialized topological structure in the (3 + 1)D or four-dimensional (4D) space (Theorem 1). Following the procedures of realizing the representation of knots on the Riemann surface and formulating the Riemann–Hilbert problem in our preceding paper [O. Suzuki and Z.D. Zhang, Mathematics 9 (2021) 776], we introduce vertex operators of knot types and a flat vector bundle for the ferromagnetic 3D Ising model (Theorems 2 and 3). By applying the monoidal transforms to trivialize the knots/links in a 4D Riemann manifold and obtain new trivial knots, we proceed to renormalize the ferromagnetic 3D Ising model in the zero external magnetic field by use of the derivation of Gauss–Bonnet–Chern formula (Theorem 4). The ferromagnetic 3D Ising model with nontrivial topological structures can be realized as a trivial model on a nontrivial topological manifold. The topological phases generalized on wavevectors are determined by the Gauss–Bonnet–Chern formula, in consideration of the mathematical structure of the 3D Ising model. Hence we prove the Zhang’s conjecture 2 (main theorem). Finally, we utilize the ferromagnetic 3D Ising model as a platform for describing a sensible interplay between the physical properties of many-body interacting systems, algebra, topology, and geometry.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Damon J. Binder

Abstract By considering the renormalization group flow between N coupled Ising models in the UV and the cubic fixed point in the IR, we study the large N behavior of the cubic fixed points in three dimensions. We derive a diagrammatic expansion for the 1/N corrections to correlation functions. Leading large N corrections to conformal dimensions at the cubic fixed point are then evaluated using numeric conformal bootstrap data for the 3d Ising model.


2013 ◽  
Vol 14 (2) ◽  
pp. 355-369 ◽  
Author(s):  
J. Kaupužs ◽  
R. V. N. Melnik ◽  
J. Rimšāns

AbstractThe singularity of specific heat CV of the three-dimensional Ising model is studied based on Monte Carlo data for lattice sizes L≤1536. Fits of two data sets, one corresponding to certain value of the Binder cumulant and the other — to the maximum of CV, provide consistent values of C0 in the ansatz CV(L)=C0+ALα/ν at large L, if α/ν=0.196(6). However, a direct estimation from our data suggests that α/ν, most probably, has a smaller value (e.g., α/ν= 0.113(30)). Thus, the conventional power-law scaling ansatz can be questioned because of this inconsistency. We have found that the data are well described by certain logarithmic ansatz.


2001 ◽  
Vol 12 (07) ◽  
pp. 911-1009 ◽  
Author(s):  
MARTIN HASENBUSCH

We review Monte Carlo simulations of the Ising model and similar models in three dimensions that were performed in the last decade. Only recently, Monte Carlo simulations provide more accurate results for critical exponents than field theoretic methods, such as the ∊-expansion. These results were obtained with finite size scaling and "improved actions". In addition, we summarize Monte Carlo results for universal amplitude ratios, the interface tension, and the dimensional crossover from three to two dimensions.


Sign in / Sign up

Export Citation Format

Share Document