Application of strip electrode in single-gap RPC

2021 ◽  
Vol 16 (11) ◽  
pp. P11037
Author(s):  
Q. Li ◽  
X. Xie ◽  
Y. Sun ◽  
J. Ge ◽  
Z. Xue

Abstract The Resistive Plate Chamber (RPC) is widely used in High Energy Physics experiments as trigger detector to take advantage of its good time resolution and high efficiency. A conventional RPC detector consists of one gas gap covered by graphite layers on both side. The working voltage is applied on these layers and the charge of avalanche dissipates through them. In this paper, a design which removes the graphite layers and uses the readout strips as the electrode is applied to simplify the structure of this detector. This design eliminates the challenge of controlling the uniformity of the graphite layer and simplifies the detector structure.

Author(s):  
Preeti Kumari ◽  
◽  
Kavita Lalwani ◽  
Ranjit Dalal ◽  
Ashutosh Bhardwaj ◽  
...  

2005 ◽  
Vol 20 (16) ◽  
pp. 3874-3876 ◽  
Author(s):  
B. Abbott ◽  
P. Baringer ◽  
T. Bolton ◽  
Z. Greenwood ◽  
E. Gregores ◽  
...  

The DØ experiment at Fermilab's Tevatron will record several petabytes of data over the next five years in pursuing the goals of understanding nature and searching for the origin of mass. Computing resources required to analyze these data far exceed capabilities of any one institution. Moreover, the widely scattered geographical distribution of DØ collaborators poses further serious difficulties for optimal use of human and computing resources. These difficulties will exacerbate in future high energy physics experiments, like the LHC. The computing grid has long been recognized as a solution to these problems. This technology is being made a more immediate reality to end users in DØ by developing a grid in the DØ Southern Analysis Region (DØSAR), DØSAR-Grid, using all available resources within it and a home-grown local task manager, McFarm. We will present the architecture in which the DØSAR-Grid is implemented, the use of technology and the functionality of the grid, and the experience from operating the grid in simulation, reprocessing and data analyses for a currently running HEP experiment.


2017 ◽  
Vol 12 (12) ◽  
pp. P12004-P12004 ◽  
Author(s):  
F. Arteche ◽  
C. Rivetta ◽  
M. Iglesias ◽  
I. Echeverria ◽  
A. Pradas ◽  
...  

1994 ◽  
Vol 348 ◽  
Author(s):  
E. Auffray ◽  
I. Dafinei ◽  
P. Lecoq ◽  
M. Schneegans

ABSTRACTCerium fluoride offers a reasonable compromise between parameters like the density, the light yield, the scintillation characteristics (particularly the decay time) and the radiation hardness, and is considered today as the best candidate for large electromagnetic calorimeters in future High Energy Physics experiments. Details on the performances of large crystals produced by different manufacturers all over the world and measured by the Crystal Clear collaboration will be shown and the usefulness of a good collaboration between the industry and the users will be highlighted by some examples on the light yield and radiation hardness improvement.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 398
Author(s):  
Yaroslav S. Derbenev ◽  
Yury N. Filatov ◽  
Anatoliy M. Kondratenko ◽  
Mikhail A. Kondratenko ◽  
Vasiliy S. Morozov

We present a review of the possibilities to conduct experiments of high efficiency in the nuclear and high energy physics with spin-polarized beams in a collider complex, configuration of which includes Siberian snakes or figure-8 collider ring. Special attention is given to the recently elicited advantageous possibility to conduct high precision experiments in a regime of the spin transparency (ST) when the design global spin tune is close to zero. In this regime, the polarization control is realized by use of spin navigators (SN), which are compact special insertions of magnets dedicated to a high flexibility spin manipulation including frequent spin flips.


Sign in / Sign up

Export Citation Format

Share Document