scholarly journals CMIP5 update of ‘Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models’

2013 ◽  
Vol 8 (2) ◽  
pp. 029401 ◽  
Author(s):  
Beate G Liepert ◽  
Fiona Lo
2007 ◽  
Vol 88 (3) ◽  
pp. 375-384 ◽  
Author(s):  
E. S. Takle ◽  
J. Roads ◽  
B. Rockel ◽  
W. J. Gutowski ◽  
R. W. Arritt ◽  
...  

A new approach, called transferability intercomparisons, is described for advancing both understanding and modeling of the global water cycle and energy budget. Under this approach, individual regional climate models perform simulations with all modeling parameters and parameterizations held constant over a specific period on several prescribed domains representing different climatic regions. The transferability framework goes beyond previous regional climate model intercomparisons to provide a global method for testing and improving model parameterizations by constraining the simulations within analyzed boundaries for several domains. Transferability intercomparisons expose the limits of our current regional modeling capacity by examining model accuracy on a wide range of climate conditions and realizations. Intercomparison of these individual model experiments provides a means for evaluating strengths and weaknesses of models outside their “home domains” (domain of development and testing). Reference sites that are conducting coordinated measurements under the continental-scale experiments under the Global Energy and Water Cycle Experiment (GEWEX) Hydrometeorology Panel provide data for evaluation of model abilities to simulate specific features of the water and energy cycles. A systematic intercomparison across models and domains more clearly exposes collective biases in the modeling process. By isolating particular regions and processes, regional model transferability intercomparisons can more effectively explore the spatial and temporal heterogeneity of predictability. A general improvement of model ability to simulate diverse climates will provide more confidence that models used for future climate scenarios might be able to simulate conditions on a particular domain that are beyond the range of previously observed climates.


2007 ◽  
Vol 34 (16) ◽  
Author(s):  
D. Waliser ◽  
K.-W. Seo ◽  
S. Schubert ◽  
E. Njoku

1989 ◽  
Vol 289 (4) ◽  
pp. 455-483 ◽  
Author(s):  
Y. Tardy ◽  
R. N'Kounkou ◽  
J.-L. Probst

2012 ◽  
Vol 93 (8) ◽  
pp. 1171-1187 ◽  
Author(s):  
Mitchell W. Moncrieff ◽  
Duane E. Waliser ◽  
Martin J. Miller ◽  
Melvyn A. Shapiro ◽  
Ghassem R. Asrar ◽  
...  

The Year of Tropical Convection (YOTC) project recognizes that major improvements are needed in how the tropics are represented in climate models. Tropical convection is organized into multiscale precipitation systems with an underlying chaotic order. These organized systems act as building blocks for meteorological events at the intersection of weather and climate (time scales up to seasonal). These events affect a large percentage of the world's population. Much of the uncertainty associated with weather and climate derives from incomplete understanding of how meteorological systems on the mesoscale (~1–100 km), synoptic scale (~1,000 km), and planetary scale (~10,000 km) interact with each other. This uncertainty complicates attempts to predict high-impact phenomena associated with the tropical atmosphere, such as tropical cyclones, the Madden–Julian oscillation, convectively coupled tropical waves, and the monsoons. These and other phenomena influence the extratropics by migrating out of the tropics and by the remote effects of planetary waves, including those generated by the MJO. The diurnal and seasonal cycles modulate all of the above. It will be impossible to accurately predict climate on regional scales or to comprehend the variability of the global water cycle in a warmer world without comprehensively addressing tropical convection and its interactions across space and time scales.


Science ◽  
2012 ◽  
Vol 336 (6080) ◽  
pp. 455-458 ◽  
Author(s):  
P. J. Durack ◽  
S. E. Wijffels ◽  
R. J. Matear

Sign in / Sign up

Export Citation Format

Share Document