scholarly journals Dynamic modelling shows substantial contribution of ecosystem restoration to climate change mitigation

Author(s):  
Emma W Littleton ◽  
Kate Dooley ◽  
Gordon Webb ◽  
Anna B. Harper ◽  
Tom Powell ◽  
...  

Abstract Limiting global warming to a 1.5°C temperature rise requires drastic emissions reductions and removal of carbon-dioxide from the atmosphere. Most modelled pathways for 1.5°C assume substantial removals in the form of biomass energy with carbon capture and storage, which brings with it increasing risks to biodiversity and food security via extensive land-use change. Recently, multiple efforts to describe and quantify potential removals via ecosystem-based approaches have gained traction in the climate policy discourse. However, these options have yet to be evaluated in a systematic and scientifically robust way. We provide spatially explicit estimates of ecosystem restoration potential quantified with a Dynamic Global Vegetation Model. Simulations covering forest restoration, reforestation, reduced harvest, agroforestry and silvopasture were combined and found to sequester an additional 93 Gt C by 2100, reducing mean global temperature increase by ~0.12°C (5-95% range 0.06-0.21°C) relative to a baseline mitigation pathway. Ultimately, pathways to achieving the 1.5°C goal garner broader public support when they include land management options that can bring about multiple benefits, including ecosystem restoration, biodiversity protection, and resilient agricultural practices.

2018 ◽  
Vol 13 (4) ◽  
pp. 044014 ◽  
Author(s):  
Naomi E Vaughan ◽  
Clair Gough ◽  
Sarah Mander ◽  
Emma W Littleton ◽  
Andrew Welfle ◽  
...  

2019 ◽  
Vol 22 (7) ◽  
pp. 6851-6875 ◽  
Author(s):  
Anders Hansson ◽  
Mathias Fridahl ◽  
Simon Haikola ◽  
Pius Yanda ◽  
Noah Pauline ◽  
...  

AbstractMost mitigation scenarios compatible with a likely change of holding global warming well below 2 °C rely on negative emissions technologies (NETs). According to the integrated assessment models (IAMs) used to produce mitigation scenarios for the IPCC reports, the NET with the greatest potential to achieve negative emissions is bioenergy with carbon capture and storage (BECCS). Crucial questions arise about where the enormous quantities of biomass needed according to the IAM scenarios could feasibly be produced in a sustainable manner. Africa is attractive in the context of BECCS because of large areas that could contribute biomass energy and indications of substantial underground CO2 storage capacities. However, estimates of large biomass availability in Africa are usually based on highly aggregated datasets, and only a few studies explore future challenges or barriers for BECCS in any detail. Based on previous research and literature, this paper analyses the pre-conditions for BECCS in Tanzania by studying what we argue are the applications of BECCS, or the components of the BECCS chain, that are most feasible in the country, namely (1) as applied to domestic sugarcane-based energy production (bioethanol), and (2) with Tanzania in a producer and re-growth role in an international BECCS chain, supplying biomass or biofuels for export to developed countries. The review reveals that a prerequisite for both options is either the existence of a functional market for emissions trading and selling, making negative emissions a viable commercial investment, or sustained investment through aid programmes. Also, historically, an important barrier to the development of production capacity of liquid biofuels for export purposes has been given by ethical dilemmas following in the wake of demand for land to facilitate production of biomass, such as sugarcane and jatropha. In these cases, conflicts over access to land and mismanagement have been more of a rule than an exception. Increased production volumes of solid biomass for export to operations that demand bioenergy, be it with or without a CCS component, is likely to give rise to similar conflicts. While BECCS may well play an important role in reducing emissions in countries with high capacity to act combined with existing large point sources of biogenic CO2 emissions, it seems prudent to proceed with utmost caution when implicating BECCS deployment in least developed countries, like Tanzania.The paper argues that negative BECCS-related emissions from Tanzania should not be assumed in global climate mitigation scenarios.


2020 ◽  
Vol 10 (2) ◽  
pp. 622
Author(s):  
Miguel A. Morales Mora ◽  
Rene D. Martínez Bravo ◽  
Carole Farell Baril ◽  
Mónica Fuentes Hernández ◽  
Sergio A. Martínez Delgadillo

In the life cycle assessment (LCA) method, it is not possible to carry out an integrated sustainability analysis because the quantification of the biophysical capacity of the ecosystems to supply ecosystem services is not taken into account. This paper considers a methodological proposal connecting the flow demand of a process or system product from the technosphere and the feasibility of the ecosystem to supply based on the sink capacity. The ecosystem metabolism as an analytical framework and data from a case study of an LCA of combined heat and power (CHP) plant with and without post-combustion carbon capture (PCC) technology in Mexico were applied. Three scenarios, including water and energy depletion and climate change impact, are presented to show the types of results obtained when the process effect of operation is scaled to one year. The impact of the water–energy–carbon nexus over the natural infrastructure or ecological fund in LCA is analyzed. Further, the feasibility of the biomass energy with carbon capture and storage (BECCS) from this result for Mexico is discussed. On the supply side, in the three different scenarios, the CHP plant requires between 323.4 and 516 ha to supply the required oil as stock flow and 46–134 ha to supply the required freshwater. On the sink side, 52–5,096,511 ha is necessary to sequester the total CO2 emissions. Overall, the CHP plant generates 1.9–28.8 MW/ha of electricity to fulfill its function. The CHP with PCC is the option with fewer ecosystem services required.


Author(s):  
Arti Mishra ◽  
Manish Kumar ◽  
Kristina Medhi ◽  
Indu Shekhar Thakur

2018 ◽  
Vol 1 ◽  
Author(s):  
Clair Gough ◽  
Samira Garcia-Freites ◽  
Christopher Jones ◽  
Sarah Mander ◽  
Brendan Moore ◽  
...  

Non-technical summaryBiomass energy with carbon capture and storage (BECCS) is represented in many integrated assessment models as a keystone technology in delivering the Paris Agreement on climate change. This paper explores six key challenges in relation to large scale BECCS deployment and considers ways to address these challenges. Research needs to consider how BECCS fits in the context of other mitigation approaches, how it can be accommodated within existing policy drivers and goals, identify where it fits within the wider socioeconomic landscape, and ensure that genuine net negative emissions can be delivered on a global scale.


Sign in / Sign up

Export Citation Format

Share Document