negative emissions
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 137)

H-INDEX

29
(FIVE YEARS 9)

2021 ◽  
Vol 3 ◽  
Author(s):  
Luca Riboldi ◽  
Rubén M. Montañés ◽  
Shareq Mohd Nazir ◽  
Anna Skorek-Osikowska
Keyword(s):  

2021 ◽  
Vol 12 (4) ◽  
pp. 1529-1542
Author(s):  
Mohammad M. Khabbazan ◽  
Marius Stankoweit ◽  
Elnaz Roshan ◽  
Hauke Schmidt ◽  
Hermann Held

Abstract. So far, scientific analyses have mainly focused on the pros and cons of solar geoengineering or solar radiation management (SRM) as a climate policy option in mere isolation. Here, we put SRM into the context of mitigation by a strictly temperature-target-based approach. As the main innovation, we present a scheme that extends the applicability regime of temperature targets from mitigation-only to SRM-mitigation analyses. We explicitly account for one major category of side effects of SRM while minimizing economic costs for complying with the 2 ∘C temperature target. To do so, we suggest regional precipitation guardrails that are compatible with the 2 ∘C target. Our analysis shows that the value system enshrined in the 2 ∘C target leads to an elimination of most of the SRM from the policy scenario if a transgression of environmental targets is confined to 1/10 of the standard deviation of natural variability. Correspondingly, about half to nearly two-thirds of mitigation costs could be saved, depending on the relaxation of the precipitation criterion. In addition, assuming a climate sensitivity of 3 ∘C or more, in case of a delayed enough policy, a modest admixture of SRM to the policy portfolio might provide debatable trade-offs compared to a mitigation-only future. Also, in our analysis which abstains from a utilization of negative emissions technologies, for climate sensitivities higher than 4 ∘C, SRM will be an unavoidable policy tool to comply with the temperature targets. The economic numbers we present must be interpreted as upper bounds in the sense that cost-lowering effects by including negative emissions technologies are absent. However, with an additional climate policy option such as carbon dioxide removal present, the role of SRM would be even more limited. Hence, our results, pointing to a limited role of SRM in a situation of immediate implementation of a climate policy, are robust in that regard. This limitation would be enhanced if further side effects of SRM are taken into account in a target-based integrated assessment of SRM.


iScience ◽  
2021 ◽  
pp. 103700
Author(s):  
Caleb M. Hill ◽  
Jose L. Mendoza-Cortes ◽  
Jesús M. Velázquez ◽  
Luisa Whittaker-Brooks
Keyword(s):  

2021 ◽  
Vol 3 ◽  
Author(s):  
Andries F. Hof ◽  
Kaj-Ivar van der Wijst ◽  
Detlef P. van Vuuren

Many countries have indicated to plan or consider the use of carbon pricing. Model-based scenarios are used to inform policymakers about emissions pathways and cost-effective carbon prices. Many of these scenarios are based on the Hotelling rule, assuming that a carbon price path increasing with the interest rate leads to a cost-effective strategy. We test the robustness of this rule by using experiments with plausible assumptions for learning by doing, inertia in reducing emissions, and restrictions on net-negative emissions. Analytically, we show that if mitigation technologies become cheaper if their capacities are increased, Hotelling does not always apply anymore. Moreover, the initial carbon price is heavily influenced by restrictions on net-negative emissions and the pathway by both restrictions on net-negative emissions and socio-economic inertia. This means that Hotelling pathways are not necessarily optimal: in fact, combining learning by doing and the above restrictions leads to initial carbon prices that are more than twice as high as a Hotelling pathway and thus to much earlier emission reductions. The optimal price path also increases less strongly and may even decline later in the century, leading to higher initial abatement costs but much lower long-term costs.


2021 ◽  
Author(s):  
Sowon Park ◽  
Jong-Seong Kug

Abstract To prevent excessive global warming, we have faced a situation to reduce net carbon dioxide (CO2) emissions. However, the behavior of Earth’s terrestrial biosphere under negative emissions is highly uncertain. Herein, we show strong hysteresis in the terrestrial carbon cycle in response to CO2 ramp-up and -down forcing. Owing to the strong hysteresis lag, the terrestrial biosphere stores more carbon at the end of simulations than at its initial state, lessening the burden on net-negative emissions. This hysteresis is latitudinally dependent, showing a longer timescale of reversibility in high latitudes. Particularly, carbon in boreal forests can be stored for a long time. However, the hysteresis of the carbon cycle in the pan-Arctic region depends on the presence of permafrost processes. That is, unexpected irreversible carbon emissions may occur in permafrost even after achieving net-zero emissions, indicating the importance of permafrost processes, which is highly uncertain based on our current knowledge.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7741
Author(s):  
Johannes Full ◽  
Mathias Trauner ◽  
Robert Miehe ◽  
Alexander Sauer

Hydrogen derived from biomass feedstock (biohydrogen) can play a significant role in Germany’s hydrogen economy. However, the bioenergy potential and environmental benefits of biohydrogen production are still largely unknown. Additionally, there are no uniform evaluation methods present for these emerging technologies. Therefore, this paper presents a methodological approach for the evaluation of bioenergy potentials and the attainable environmental impacts of these processes in terms of their carbon footprints. A procedure for determining bioenergy potentials is presented, which provides information on the amount of usable energy after conversion when applied. Therefore, it elaborates a four-step methodical conduct, dealing with available waste materials, uncertainties of early-stage processes, and calculation aspects. The bioenergy to be generated can result in carbon emission savings by substituting fossil energy carriers as well as in negative emissions by applying biohydrogen production with carbon capture and storage (HyBECCS). Hence, a procedure for determining the negative emissions potential is also presented. Moreover, the developed approach can also serve as a guideline for decision makers in research, industry, and politics and might also serve as a basis for further investigations such as implementation strategies or quantification of the benefits of biohydrogen production from organic waste material in Germany.


Sign in / Sign up

Export Citation Format

Share Document