scholarly journals Critical behaviour of the randomly stirred dynamical Potts model: novel universality class and effects of compressibility

2012 ◽  
Vol 45 (50) ◽  
pp. 505001 ◽  
Author(s):  
N V Antonov ◽  
A S Kapustin
1990 ◽  
Vol 04 (09) ◽  
pp. 1437-1464 ◽  
Author(s):  
A.L. STELLA ◽  
C. VANDERZANDE

A review is given of recent work on the ordinary surface critical behaviour of systems in two dimensions. Several models of interest in statistical mechanics are considered: Potts model, percolation, Ising clusters, ZN-model, O(n) model and polymers. Numerical results for surface exponents, obtained by suitable finite size scaling extrapolations, are discussed in the light of recent advances based on the conformal invariance approach. Surface exponents are often seen as important tests of conformal invariance predictions. In other cases these exponents provide important information for a location of the problem within the classification schemes offered by the conformal approach, and a determination of its universality class. A relevant example of the first aspect is the study of the q-state Potts model with q near 4, for which an analytical study of logarithmic scaling corrections is needed to achieve a successful test. The latter point of view applies, e.g., to the more controversial cases of polymers at the theta point and critical Ising clusters. Emphasis is put on the importance of an integrated study of both bulk and surface properties. Relevant issues, like the possible existence of analytical expressions for the indices in particular model families, or of general relationships between bulk and surface exponents, are critically discussed. The new problem of critical behaviour at fractal boundaries is also considered for random (RW) and self-avoiding walks (SAW). From the numerical analysis of this problem remarkable universalities of the surface exponents seem to emerge, which, in the case of SAW’s, are still far from being understood.


Soft Matter ◽  
2021 ◽  
Author(s):  
Claudio Maggi ◽  
Matteo Paoluzzi ◽  
Andrea Crisanti ◽  
Emanuela Zaccarelli ◽  
Nicoletta Gnan

We perform large-scale computer simulations of an off-lattice two-dimensional model of active particles undergoing a motility-induced phase separation (MIPS) to investigate the systems critical behaviour close to the critical point...


1983 ◽  
Vol 61 (11) ◽  
pp. 1515-1527 ◽  
Author(s):  
James Glosli ◽  
Michael Plischke

The Ising model with nearest and next nearest neighbor antiferromagnetic interactions on the triangular lattice displays, for Jnnn/Jnn = 0.1, three phase transitions in different universality classes as the magnetic field is increased. We have studied this model using Monte Carlo and renormalization group techniques. The transition from the paramagnetic to the 2 × 1 phase (universality class of the Heisenberg model with cubic anisotropy) is found to be first order; the transition from the paramagnetic phase to the [Formula: see text] phase (universality class of the three state Potts model) is continuous; and the transition from the paramagnetic to the 2 × 2 phase (universality class of the four state Potts model) is found to change from first order to continuous as the field is increased. We have mapped out the phase diagram and determined the critical exponents for the continuous transitions. A novel technique, using a Landau-like free energy functional determined from Monte Carlo calculations, to distinguish between first order and continuous transitions, is described.


Sign in / Sign up

Export Citation Format

Share Document