scholarly journals Analysis of land cover change and rainfall on the global land surface water coverage database for 1987-2015

Author(s):  
X Li ◽  
W Takeuchi
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jianwu Yan ◽  
Baozhang Chen ◽  
Min Feng ◽  
John L. Innes ◽  
Guangyu Wang ◽  
...  

Climate change inevitably leads to changes in hydrothermal circulation. However, thermal-hydrologic exchanging caused by land cover change has also undergone ineligible changes. Therefore, studying the comprehensive effects of climate and land cover changes on land surface water and heat exchanges enables us to well understand the formation mechanism of regional climate and predict climate change with fewer uncertainties. This study investigated the land surface thermal-hydrologic exchange across southern China for the next 40 years using a land surface model (ecosystem-atmosphere simulation scheme (EASS)). Our findings are summarized as follows. (i) Spatiotemporal variation patterns of sensible heat flux (H) and evapotranspiration (ET) under the land cover scenarios (A2a or B2a) and climate change scenario (A1B) are unanimous. (ii) BothHand ET take on a single peak pattern, and the peak occurs in June or July. (iii) Based on the regional interannual variability analysis,Hdisplays a downward trend (10%) and ET presents an increasing trend (15%). (iv) The annual averageHand ET would, respectively, increase and decrease by about 10% when woodland converts to the cultivated land. Through this study, we recognize that land surface water and heat exchanges are affected greatly by the future climate change as well as land cover change.


2014 ◽  
Vol 57 (10) ◽  
pp. 2330-2339 ◽  
Author(s):  
Xin Cao ◽  
Jun Chen ◽  
LiJun Chen ◽  
AnPing Liao ◽  
FangDi Sun ◽  
...  

GCdataPR ◽  
2020 ◽  
Author(s):  
Jun CHEN ◽  
Anping LIAO ◽  
Lijun CHEN ◽  
Hongwei ZHANG ◽  
Chaoying HE ◽  
...  

2021 ◽  
Vol 258 ◽  
pp. 112364
Author(s):  
Han Liu ◽  
Peng Gong ◽  
Jie Wang ◽  
Xi Wang ◽  
Grant Ning ◽  
...  

2019 ◽  
Vol 11 (3) ◽  
pp. 327 ◽  
Author(s):  
Xia Wang ◽  
Feng Ling ◽  
Huaiying Yao ◽  
Yaolin Liu ◽  
Shuna Xu

Mapping land surface water bodies from satellite images is superior to conventional in situ measurements. With the mission of long-term and high-frequency water quality monitoring, the launch of the Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A and Sentinel-3B provides the best possible approach for near real-time land surface water body mapping. Sentinel-3 OLCI contains 21 bands ranging from visible to near-infrared, but the spatial resolution is limited to 300 m, which may include lots of mixed pixels around the boundaries. Sub-pixel mapping (SPM) provides a good solution for the mixed pixel problem in water body mapping. In this paper, an unsupervised sub-pixel water body mapping (USWBM) method was proposed particularly for the Sentinel-3 OLCI image, and it aims to produce a finer spatial resolution (e.g., 30 m) water body map from the multispectral image. Instead of using the fraction maps of water/non-water or multispectral images combined with endmembers of water/non-water classes as input, USWBM directly uses the spectral water index images of the Normalized Difference Water Index (NDWI) extracted from the Sentinel-3 OLCI image as input and produces a water body map at the target finer spatial resolution. Without the collection of endmembers, USWBM accomplished the unsupervised process by developing a multi-scale spatial dependence based on an unsupervised sub-pixel Fuzzy C-means (FCM) clustering algorithm. In both validations in the Tibet Plate lake and Poyang lake, USWBM produced more accurate water body maps than the other pixel and sub-pixel based water body mapping methods. The proposed USWBM, therefore, has great potential to support near real-time sub-pixel water body mapping with the Sentinel-3 OLCI image.


Sign in / Sign up

Export Citation Format

Share Document