scholarly journals Formation mechanism and distribution characteristics of micro residual oil in ultra-high water cut reservoirs a case study of yangsanmu oilfield

Author(s):  
Shuo Zhang ◽  
Tao Zhang ◽  
Xianguo Zhang ◽  
Mingming Yan
2016 ◽  
Author(s):  
Xueqing Tang ◽  
Lirong Dou ◽  
Ruifeng Wang ◽  
Jie Wang ◽  
Shengbao Wang ◽  
...  

ABSTRACT Jake field, discovered in July, 2006, contains 10 oil-producing and 12 condensate gas-producing zones. The wells have high flow capacities, producing from long-perforation interval of 3,911 ft (from 4,531 to 8,442 ft). Production mechanisms include gas injection in downdip wells and traditional gas lift in updip, zonal production wells since the start-up of field in July, 2010. Following pressure depletion of oil and condensate-gas zones and water breakthrough, traditional gas-lift wells became inefficient and dead. Based on nodal analysis of entire pay zones, successful innovations in gas lift have been made since March, 2013. This paper highlights them in the following aspects: Extend end of tubing to the bottom of perforations for commingled production of oil and condensate gas zones, in order to utilize condensate gas producing from the lower zones for in-situ gas lift.Produce well stream from the casing annulus while injecting natural gas into the tubing.High-pressure nitrogen generated in-situ was used to kick off the dead wells, instead of installation of gas lift valves for unloading. After unloading process, the gas from compressors was injected down the tubing and back up the casing annulus.For previous high water-cut producers, prior to continuous gas lift, approximately 3.6 MMcf of nitrogen can be injected and soaked a couple of days for anti-water-coning.Two additional 10-in. flow lines were constructed to minimize the back pressure of surface facilities on wellhead. As a consequence, innovative gas-lift brought dead wells back on production, yielding average sustained liquid rate of 7,500 bbl/d per well. Also, the production decline curves flattened out than before.


2009 ◽  
Author(s):  
Fathi Younis Shnaib ◽  
Abdel Maksoud Mohamed Desouky ◽  
Nagendra Mehrotra ◽  
Mohamed Muhiz Kuthubdeen ◽  
Gunther Rutzinger ◽  
...  

Author(s):  
F. Shnaib ◽  
A.M. Desouky ◽  
N. Mehrotra ◽  
M.M. Kuthubdeen ◽  
G. Rutzinger ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Liang Yingjie ◽  
Liang Wenfu ◽  
He Wang ◽  
Li Zian

In this paper, the variation of clay minerals and their influence on reservoir physical properties and residual oil before and after ASP flooding are analyzed. The results show that the total amount of clay minerals in reservoirs decreases after ASP flooding in the ultra-high-water-cut-stage reservoirs of the Naner Zone in the Saertu Oilfield, Songliao Basin. Therein, the illite content reduces, while the content of illite smectite mixed-layer and chlorite increases. The content of kaolinite varies greatly. The content of kaolinite decreases in some samples, while it increases in other samples. The clay minerals block the pore throat after ASP flooding. As a result, the pore structure coefficient and the seepage tortuosity increase, the primary intergranular pore throat shrinks, and the pore–throat coordination number decreases. Nevertheless, the dissolution of clay minerals reduces the pore–throat ratio and increases porosity and permeability. The variation of clay minerals after ASP flooding not only intensifies the reservoir heterogeneity but also affects the formation and distribution of residual oil. The residual oil of the oil–clay mixed adsorption state is a newly formed residual oil type related to clay, which accounts for 44.2% of the total residual oil reserves, so it is the main occurrence form of the oil in reservoirs after ASP flooding. Therefore, the exploitation of this type of residual oil has great significance to enhance the oil recovery in ultra-high-water-cut-stage reservoirs.


Sign in / Sign up

Export Citation Format

Share Document