high water cut stage
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 36)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Liang Yingjie ◽  
Liang Wenfu ◽  
He Wang ◽  
Li Zian

In this paper, the variation of clay minerals and their influence on reservoir physical properties and residual oil before and after ASP flooding are analyzed. The results show that the total amount of clay minerals in reservoirs decreases after ASP flooding in the ultra-high-water-cut-stage reservoirs of the Naner Zone in the Saertu Oilfield, Songliao Basin. Therein, the illite content reduces, while the content of illite smectite mixed-layer and chlorite increases. The content of kaolinite varies greatly. The content of kaolinite decreases in some samples, while it increases in other samples. The clay minerals block the pore throat after ASP flooding. As a result, the pore structure coefficient and the seepage tortuosity increase, the primary intergranular pore throat shrinks, and the pore–throat coordination number decreases. Nevertheless, the dissolution of clay minerals reduces the pore–throat ratio and increases porosity and permeability. The variation of clay minerals after ASP flooding not only intensifies the reservoir heterogeneity but also affects the formation and distribution of residual oil. The residual oil of the oil–clay mixed adsorption state is a newly formed residual oil type related to clay, which accounts for 44.2% of the total residual oil reserves, so it is the main occurrence form of the oil in reservoirs after ASP flooding. Therefore, the exploitation of this type of residual oil has great significance to enhance the oil recovery in ultra-high-water-cut-stage reservoirs.


Author(s):  
Yanlai Li ◽  
Jie Tan ◽  
Songru Mou ◽  
Chunyan Liu ◽  
Dongdong Yang

AbstractFor offshore reservoirs with a big bottom water range, the water cut rises quickly and soon enters the ultra-high water cut stage. After entering the ultra-high water cut stage, due to the influence of offshore production facilities, there are few potential tapping measures, so it is urgent to explore the feasibility study of artificial water injection development. The quasi-three-dimensional and two-dimensional displacement experiments are designed using the experimental similarity criteria according to the actual reservoir parameters. Several experimental schemes are designed, fluid physical properties, interlayer distribution, and development mode according to the actual reservoir physical properties. Through the visualization of experimental equipment, the bottom water reservoir is visually stimulated. The displacement and sweep law of natural water drive and artificial water injection in bottom water reservoir with or without an interlayer, different viscosity, and different well spacing is analyzed. The following conclusions are obtained: (1) For reservoirs with a viscosity of 150 cp. The recovery factor after water injection is slightly higher than before water injection. However, the recovery factor is lower than that without injection production. The reason is that the increment of injection conversion is limited to reduce one production well after injection conversion. (2) For reservoirs with a viscosity of 30 cp. The recovery factor after injection is 39.8%, which is slightly higher than 38.9% without injection. (3) For reservoirs with a viscosity of 150 cp. In the case of the interlayer. The recovery factor after injection is 30.7%, which is significantly higher than 24.8% without injection. (4) After the well spacing of the low-viscosity reservoir is reduced, the recovery factor reaches 46.1%, which is higher than 38.9% of the non-infill scheme. After the infill well in a low-viscosity reservoir is transferred to injection, the recovery factor is 45.6%, which has little change compared with non-injection, and most of the cumulative production fluid is water. The feasibility and effect of water flooding in a strong bottom water reservoir are demonstrated. This study provides the basis for the proposal of production well injection conversion and the adjustment of production parameters in the highest water cut stage of a big bottom water reservoir.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xinyu Qiu ◽  
Botao Kang ◽  
Pengcheng Liu ◽  
Shengye Hao ◽  
Yanglei Zhou ◽  
...  

The hydraulic refracturing operations are often used to improve oil deliverability in the low-permeability reservoir. When the development of oilfields has entered a high water cut stage, oil deliverability can be promoted by refracturing reservoirs. The orientation of the new fracture formed by refracturing will be changed. The new formed fracture is called reorientation fracture. To calculate the oil deliverability of the refracture wells, a three-section fracture which includes reorientation fracture was established. The multiwell pressure drop superposition theory is used to derive the analytical solution of the refracture wells which includes the reorientation fracture. The numerical simulation was conducted to validate the results of the analytical solution. Comparing the refracture well deliverability of reorientation and nonreorientation, permeability, deflection angle, and the length of reorientation fracture will jointly control the productivity of refracture well. When the permeability in the direction of maximum principal stress is greater than the permeability in the direction of minimum principal stress, the capacity of reorientation fractures is relatively large. The deflection angles and the length of the reorientation fracture will directly affect the drainage area of the fracture, thus affecting productivity. The reorientation fractures generated by repeated fracturing have great potential for improving oil deliverability in the anisotropic low-permeability reservoirs.


Author(s):  
Jie Tan ◽  
Ying-xian Liu ◽  
Yan-lai Li ◽  
Chun-yan Liu ◽  
Song-ru Mou

AbstractX oilfield is a typical sandstone reservoir with big bottom water in the Bohai Sea. The viscosity of crude oil ranges from 30 to 425 cp. Single sand development with the horizontal well is adopted. At present, the water content is as high as 96%. The water cut of the production well is stable for a long time in the high water cut period. The recoverable reserves calculated by conventional methods have gradually increased, and even the partial recovery has exceeded the predicted recovery rate. This study carried out an oil displacement efficiency experiment under big water drive multiple to accurately understand an extensive bottom water reservoir's production law in an ultra-high water cut stage. It comprehensively used the scanning electron microscope date, casting thin section, oil displacement experiment, and production performance to analyze the change law of physical properties and relative permeability curve from the aspects of reservoir clay minerals, median particle size, pore distribution, and pore throat characteristics. Therefore, the development law of horizontal production wells in sandstone reservoirs with big bottom water is understood. It evaluates the ultimate recovery of sandstone reservoirs with big bottom water. It provides a fundamental theoretical basis and guidance for dynamic prediction and delicate potential tapping of sandstone reservoirs with big bottom water at a high water cut stage.


2021 ◽  
Vol 5 (2) ◽  
pp. 139-152
Author(s):  
Debin Kong ◽  
Yubao Gao ◽  
Hemanta Sarma ◽  
Yiqiang Li ◽  
Hu Guo ◽  
...  

2021 ◽  
Author(s):  
Kuiqian Ma ◽  
Cunliang Chen ◽  
Wei Zhang ◽  
Bin Liu ◽  
Xiaodong Han

Abstract Performance prediction is one of the important contents of oilfield development. It is also an important content affecting investment decision-making, especially for offshore oilfields with large investment. At present, most oilfields in China have entered high water cut stage or even extra high water cut stage, which requires higher prediction accuracy. Water drive curve is an important method for predicting performance. Traditional methods are based on exponential formulas, but these methods have poor adaptability in high water cut period. Because traditional methods deviate from straight line in high water cut period. In this paper, a robust method for predicting performance of offshore oilfield in high water cut period based on big data and artificial intelligence is proposed. Firstly, the reasons for the "upward warping" phenomenon of traditional methods deviating from the straight line are analyzed. It is found that the main reason for the deviation is that the relationship between the relative permeability ratio of oil to water and the water saturation curve no longer conforms to the exponential relationship. So a new percolation characteristic characterization equation with stronger adaptability is proposed, which focuses on the limit of high water flooding development. On this basis, the equation of the new water drive characteristic curve is deduced theoretically, and the dynamic prediction method is established. What's more, the solution of the method is based on large data and AI algorithm. This method has been applied to many high water flooding phase permeability curves, and the coincidence rate is more than 95.6%. The new water drive characteristic curve can better reflect the percolation characteristics of high water cut reservoirs. At the same time, the performance of adjustment wells and measures on the curve of development dynamic image is analyzed. Curve warping indicates that adjustment wells or measures are effective. Field application shows that the prediction error of the new method is less than 6%, which is more in line with the needs of oilfield development. Because of the application of artificial intelligence algorithm, the application is more convenient and saves a lot of time and money. This is a process of self-learning and self-improvement. As the oil field continues over time, each actual data will be recalculated into the database. Then the fitting and correction are carried out, and then the solution is learned again. This method has been applied to several oil fields in Bohai. And the effect is remarkable, which provides a good reference for the development of other oil fields.


2021 ◽  
Vol 3 (1) ◽  
pp. 29-42
Author(s):  
M. Sh. Musayev ◽  
D. A. Musharova ◽  
B. Zh. Zhappasbayev ◽  
E. K. Orynbassar

In conditions of high depletion of oil fields and volatile oil prices, methods of enhanced oil recovery are becoming especially relevant, the use of which contributes to an increase in the oil recovery factor in addition to the use of secondary oil recovery methods. One of the technologies allowing to increase the oil recovery factor is polymer flooding technology, the distinctive advantage of which in comparison with other chemical methods is a wide range of application conditions and design variability during implementation. This paper presents the results of the application of polymer flooding technology in the oil field of Kazakhstan Zaburunye, which is in the high water-cut stage. To determine the strategy for the further implementation of polymer flooding technology and in order to find the optimal predictive development options, calculations were carried out on the developed hydrodynamic model.


Sign in / Sign up

Export Citation Format

Share Document