scholarly journals Simulation on vapour compression heat pump system for rough rice drying

Author(s):  
L O Nelwan ◽  
R P A Setiawan ◽  
M Yulianto ◽  
Irfandi ◽  
M Fachry ◽  
...  
2016 ◽  
Vol 04 (2) ◽  
pp. 1-8
Author(s):  
Damawidjaya Biksono ◽  
◽  
Leopold Nelwan ◽  
Tineke Mandang ◽  
Dyah Wulandani ◽  
...  

Author(s):  
Neeraj Agrawal ◽  
Souvik Bhattacharyya

Natural refrigerants which are ecologically safe and were in use extensively in the pre-CFC era are witnessing a revival of CO2 (R744). Inherently being a low critical temperature (31.2 ?C) refrigerant, the CO2 cycle based system operates in transcritical mode offers an opportunity to obtain an optimum operating condition. Capillary tubes which are extensively used in small size vapour compression systems work very differently in a CO2 transcritical heat pump system. In this chapter it is described that installation of a capillary tube having an appropriately designed length replacing an expansion valve will result in a natural adjustment of the gas cooler pressure, so that the system balance always shifts to a favourable COP direction; this is contrary to the scepticism that exists on the capability of a capillary tube to attain the optimal pressure operation. There is an optimal length of capillary tube for a given diameter at which the heat pump runs optimally.


Author(s):  
T. Nomaguchi ◽  
T. Suganami ◽  
M. Fujiwara ◽  
M. Sakai ◽  
T. Koda ◽  
...  

HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 249a-249
Author(s):  
Eric A. Lavoie ◽  
Damien de Halleux ◽  
André Gosselin ◽  
Jean-Claude Dufour

The main objective of this research was to produce a simulated model that permitted the evaluation of operating costs of commercial greenhouse tomato growers with respect to heating methods (hot air, hot water, radiant and heat pumps) and the use of artificial lighting for 1991 and 1992. This research showed that the main factors that negatively influence profitability were energy consumption during cold periods and the price of tomatoes during the summer season. The conventional hot water system consumed less energy than the heat pump system and produced marketable fruit yields similar to those from the heat pump system. The hot water system was generally more profitable in regards to energy consumption and productivity. Moreover, investment costs were less; therefore, this system gives best overall financial savings. As for radiant and hot air systems, their overall financial status falls between that of the hot water system and the heat pump. The radiant system proved to be more energy efficient that the hot air system, but the latter produced a higher marketable fruit yield over the 2-year study.


Sign in / Sign up

Export Citation Format

Share Document