3 kW Class Displacer Type Stirling Engine for Heat Pump System

Author(s):  
T. Nomaguchi ◽  
T. Suganami ◽  
M. Fujiwara ◽  
M. Sakai ◽  
T. Koda ◽  
...  
Author(s):  
Tomáš Stejskal ◽  
Jozef Svetlík ◽  
Peter Demeč ◽  
Miroslav Dovica ◽  
Miroslav Štofa ◽  
...  

Three-temperature heating systems consist of a heat engine and a heat pump, enabling thus maximum usage of the primary thermal source for the heating of buildings. This analysis has revealed obvious advantages and disadvantages that the combining of thermodynamic systems has in future development, also with respect to environmental and economic issues. It appears that the combination of a Stirling engine or a similar heat drive with a heat pump is especially suitable. In order to analyze the effectiveness of such a system, a comprehensive calculation procedure is used: its basis lies in accounting for all types of energy and their relationship to the original natural resource. The present paper aims to point out that the combination of Stirling engine and a heat pump is a useful solution thanks to the most favorable resultant economic impact if compared to the usage of a diesel, four-stroke gas, or, most commonly used, electric drive.


1992 ◽  
Author(s):  
Michio Fujiwara ◽  
Teruo Sugimoto ◽  
Mikio Mori ◽  
Ken-ichi Shinozaki

HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 249a-249
Author(s):  
Eric A. Lavoie ◽  
Damien de Halleux ◽  
André Gosselin ◽  
Jean-Claude Dufour

The main objective of this research was to produce a simulated model that permitted the evaluation of operating costs of commercial greenhouse tomato growers with respect to heating methods (hot air, hot water, radiant and heat pumps) and the use of artificial lighting for 1991 and 1992. This research showed that the main factors that negatively influence profitability were energy consumption during cold periods and the price of tomatoes during the summer season. The conventional hot water system consumed less energy than the heat pump system and produced marketable fruit yields similar to those from the heat pump system. The hot water system was generally more profitable in regards to energy consumption and productivity. Moreover, investment costs were less; therefore, this system gives best overall financial savings. As for radiant and hot air systems, their overall financial status falls between that of the hot water system and the heat pump. The radiant system proved to be more energy efficient that the hot air system, but the latter produced a higher marketable fruit yield over the 2-year study.


Sign in / Sign up

Export Citation Format

Share Document