scholarly journals Geochemical characteristics and genesis of the Upper Paleozoic natural gas in Longdong area, Ordos Basin, NW China

Author(s):  
Qingfen Kong ◽  
Lingyin Kong ◽  
Jianfeng Li
2021 ◽  
Vol 200 ◽  
pp. 108406
Author(s):  
Kaiming Su ◽  
Shijia Chen ◽  
Yuting Hou ◽  
Haifeng Zhang ◽  
Xiaolei Zhang ◽  
...  

2016 ◽  
Vol 35 (1) ◽  
pp. 103-121 ◽  
Author(s):  
Wenxue Han ◽  
Shizhen Tao ◽  
Guoyi Hu ◽  
Weijiao Ma ◽  
Dan Liu ◽  
...  

Light hydrocarbon has abundant geochemical information, but there are few studies on it in Shenmu gas field. Taking Upper Paleozoic in Shenmu gas field as an example, authors use gas chromatography technology to study light hydrocarbon systematically. The results show that (1) The Shenmu gas field is mainly coal-derived gas, which is mixed by partial oil-derived gas due to the experiment data. (2) Based on K1, K2 parameter and Halpern star chart, the Upper Paleozoic gas in Shenmu gas field belongs to the same petroleum system and the depositional environment of natural gas source rocks should be homologous. (3) The source rocks are mainly from terrestrial higher plant origins and belong to swamp facies humic due to methyl cyclohexane index and Mango parameter intersection chart, which excluded the possibility of the Upper Paleozoic limestone as source rocks. (4) The isoheptane ranges from 1.45 to 2.69 with an average of 2.32, and n-heptane ranges from 9.48 to 17.68% with an average of 11.71%, which is below 20%. The maturity of Upper Paleozoic gas in Shenmu gas field is low-normal stage, which is consistent with Ro data. (5) The Upper Paleozoic natural gas in the Shenmu gas field did not experience prolonged migration or secondary changes, thus can be analyzed by light hydrocarbon index precisely.


2014 ◽  
Vol 41 (4) ◽  
pp. 437-448 ◽  
Author(s):  
Yanru GUO ◽  
Jinhua FU ◽  
Xinshan WEI ◽  
Wanglin XU ◽  
Liuyi SUN ◽  
...  

2016 ◽  
Vol 43 (4) ◽  
pp. 591-601 ◽  
Author(s):  
Dan LIU ◽  
Wenzheng ZHANG ◽  
Qingfen KONG ◽  
Ziqi FENG ◽  
Chenchen FANG ◽  
...  

2016 ◽  
Vol 102 ◽  
pp. 67-76 ◽  
Author(s):  
Ziqi Feng ◽  
Dan Liu ◽  
Shipeng Huang ◽  
Deyu Gong ◽  
Weilong Peng

2017 ◽  
Vol 36 (3) ◽  
pp. 373-387
Author(s):  
Jingdong Liu ◽  
Youlu Jiang ◽  
Xinshe Liu ◽  
Rongwei Zhu

The Ordovician dolomite reservoir in Ma55–Ma510 sub-members in Jingxi in Ordos Basin is a newly discovered field with multiple natural gas pools. The gas accumulation patterns of the reservoir are unclear. Considering the geological background, the genesis, migration, and accumulation of natural gas in Jingxi were studied systematically, and favorable exploration targets were predicted. Natural gas in Ma55–Ma510 sub-members is a mixture of Upper Paleozoic and Ordovician products. The Upper Paleozoic coaliferous gas was mainly expulsed downward through the hydrocarbon-providing window where the coal-bearing source rocks made contact with the dolomite reservoirs. The gas then migrated from west to east and accumulated under the condition of lithology variation. The Ordovician petroliferous gas mainly migrated from bottom to top through fractures and mixed with the coaliferous gas in Ma55–Ma510 sub-members. The natural gas reservoir formation model was summarized as the migration of gas over a short distance and partial charging into the dolomite reservoirs from the Late Triassic to Middle Jurassic, and the migration of gas over a long distance and massive charging into the dolomite reservoirs during the Late Cretaceous. Ma55 and Ma56 sub-members are the focus of further exploration, and petroliferous gas in Ma57–Ma510 sub-members deserves attention. The dolomite reservoirs of the hydrocarbon-providing windows and the east of these locations are the favorable exploration targets.


Sign in / Sign up

Export Citation Format

Share Document