scholarly journals Layered soil exploration based on the time domain spectral induced polarization method

Author(s):  
Xin Li ◽  
Manni Chao ◽  
Lei Ju ◽  
Junlong Wang ◽  
Kai Zhang ◽  
...  
2012 ◽  
Vol 10 (6) ◽  
pp. 453-468 ◽  
Author(s):  
Andreas Kemna ◽  
Andrew Binley ◽  
Giorgio Cassiani ◽  
Ernst Niederleithinger ◽  
André Revil ◽  
...  

2016 ◽  
Vol 19 (4) ◽  
pp. 212-219
Author(s):  
Samgyu Park ◽  
Seung Wook Shin ◽  
Jeong-Sul Son ◽  
Seong-Jun Cho

Geophysics ◽  
1984 ◽  
Vol 49 (11) ◽  
pp. 1993-2003 ◽  
Author(s):  
Ian M. Johnson

A method for the extraction of Cole-Cole spectral parameters from time‐domain induced polarization data is demonstrated. The instrumentation required to effect the measurement and analysis is described. The Cole-Cole impedance model is shown to work equally well in the time domain as in the frequency domain. Field trials show the time‐domain method to generate spectral parameters consistent with those generated by frequency‐domain surveys. This is shown to be possible without significant alteration to field procedures. Cole-Cole time constants of up to 100 s are shown to be resolvable given a transmitted current of a 2 s pulse‐time. The process proves to have added usefulness as the Cole-Cole forward solution proves an excellent basis for quantifying noise in the measured decay.


Geophysics ◽  
1964 ◽  
Vol 29 (3) ◽  
pp. 425-433 ◽  
Author(s):  
Philip G. Hallof

The increased use of the induced‐polarization method in recent years has resulted in two methods of measurement. The measurements in the frequency domain (variable‐frequency method) rely on changes in the apparent resistivities measured as the frequency of the applied current is varied. The measurement in the time domain (pulse‐transient method) detects transients in the measured potentials when the applied current is interrupted. The “chargeability” is the parameter used in the pulse‐transient method, while both the “frequency effect” and the normalized parameter “metal factor” are used in the variable‐frequency method. The most useful parameter would be the one which best indicates the amount of metallic mineralization present. Eight sets of field results from variable‐frequency field surveys are shown. The cases are shown in pairs; in each pair, the geometry of the source is much the same. By comparing the resistivity, the frequency effect (chargeability), and metal‐factor data with the amount of mineralization indicated by the drilling results, the usefulness of these parameters can be evaluated.


Sign in / Sign up

Export Citation Format

Share Document