Spectral induced polarization parameters as determined through time‐domain measurements

Geophysics ◽  
1984 ◽  
Vol 49 (11) ◽  
pp. 1993-2003 ◽  
Author(s):  
Ian M. Johnson

A method for the extraction of Cole-Cole spectral parameters from time‐domain induced polarization data is demonstrated. The instrumentation required to effect the measurement and analysis is described. The Cole-Cole impedance model is shown to work equally well in the time domain as in the frequency domain. Field trials show the time‐domain method to generate spectral parameters consistent with those generated by frequency‐domain surveys. This is shown to be possible without significant alteration to field procedures. Cole-Cole time constants of up to 100 s are shown to be resolvable given a transmitted current of a 2 s pulse‐time. The process proves to have added usefulness as the Cole-Cole forward solution proves an excellent basis for quantifying noise in the measured decay.

1983 ◽  
Vol 82 (3) ◽  
pp. 331-346 ◽  
Author(s):  
J M Fernández ◽  
R E Taylor ◽  
F Bezanilla

Voltage-clamped squid giant axons, perfused internally and externally with solutions containing 10(-5) M dipicrylamine (DpA-), show very large polarization currents (greater than or equal to 1 mA/cm2) in response to voltage steps. The induced polarization currents are shown in the frequency domain as a very large voltage-and frequency-dependent capacitance that can be fit by single Debye-type relaxations. In the time domain, the decay phase of the induced currents can be fit by single exponentials. The induced polarization currents can also be observed in the presence of large sodium and potassium currents. The presence of the DpA- molecules does not affect the resting potential of the axons, but the action potentials appear graded, with a much-reduced rate of rise. The data in the time domain as well as the frequency domain can be explained by a single-barrier model where the DpA- molecules translocate for an equivalent fraction of the electric field of 0.63, and the forward and backward rate constants are equal at -15 mV. When the induced polarization currents described here are added to the total ionic current expression given by Hodgkin and Huxley (1952), numerical solutions of the membrane action potential reproduce qualitatively our experimental data. Numerical solutions of the propagated action potential predict that large changes in the speed of conduction are possible when polarization currents are induced in the axonal membrane. We speculate that either naturally occurring substances or drugs could alter the cable properties of cells in a similar manner.


Author(s):  
Sara Johansson ◽  
Anders Lindskog ◽  
Gianluca Fiandaca ◽  
Torleif Dahlin

Summary With advances in data acquisition and processing methods, spectral inversion of time domain induced polarization (IP) data is becoming more common. Geological interpretation of inverted spectral parameters, for instance Cole-Cole parameters, often relies on results from systematic laboratory measurements. These are most often carried out with frequency domain systems on sandstone samples. However, the two different methods of measuring the spectral IP response differ in both measurement technique and scale. One of the main objectives of the current study is, thus, to perform a direct comparison of inverted spectral parameters from time domain IP field data with frequency domain IP spectra from laboratory measurements. To achieve this, field measurements were carried out before a ∼50 m long rock core was drilled down along one of the measurement lines. Solid parts of the core were vacuum-sealed in plastic bags to preserve the natural groundwater in the samples, after which the core samples were measured with frequency domain spectral IP in laboratory. The results showed that the inverted Cole-Cole parameters closest to the borehole were comparable to the IP spectra measured at the core samples, despite differences in measurement techniques and scale. The field site chosen for the investigation was a limestone succession spanning over a well-known lithological boundary (the Cretaceous—Paleogene boundary). Little is known in previous research about varying spectral IP responses in limestones, and an additional objective of this study was, therefore, to investigate possible sources of these variations in the laboratory. The IP spectra were interpreted in light of measured lithological and physicochemical properties. The carbonate texture differed strongly across the Cretaceous—Paleogene boundary from fine-grained calcareous mudstone (Cretaceous) to more well-lithified and coarse-grained wackestone and packstone (Paleogene). Both laboratory and field spectral IP results showed that these differences cause a large shift in measured bulk conductivity across the boundary. Furthermore, carbonate mound structures with limestone grains consisting mainly of ∼cylindrical bryozoan fragments could be identified in the inverted Cole-Cole parameters as anomalies with high relaxation times. A general conclusion of this work is that limestones can give rise to a wide range of spectral responses. The carbonate texture and the dominant shape of the fossil grains seem to have important control over the electrical properties of the material. A main conclusion is that the inverted Cole-Cole parameters from the field scale time domain IP tomography were comparable to the magnitude and shape of frequency domain IP spectra at low frequencies. This opens up large interpretational possibilities, as the comprehensive knowledge about relationships between lithological properties and IP spectra from laboratory research can be used for field data interpretation.


2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


2021 ◽  
Vol 9 (7) ◽  
pp. 781
Author(s):  
Shi He ◽  
Aijun Wang

The numerical procedures for dynamic analysis of mooring lines in the time domain and frequency domain were developed in this work. The lumped mass method was used to model the mooring lines. In the time domain dynamic analysis, the modified Euler method was used to solve the motion equation of mooring lines. The dynamic analyses of mooring lines under horizontal, vertical, and combined harmonic excitations were carried out. The cases of single-component and multicomponent mooring lines under these excitations were studied, respectively. The case considering the seabed contact was also included. The program was validated by comparing with the results from commercial software, Orcaflex. For the frequency domain dynamic analysis, an improved frame invariant stochastic linearization method was applied to the nonlinear hydrodynamic drag term. The cases of single-component and multicomponent mooring lines were studied. The comparison of results shows that frequency domain results agree well with nonlinear time domain results.


2002 ◽  
Vol 124 (4) ◽  
pp. 827-834 ◽  
Author(s):  
D. O. Baun ◽  
E. H. Maslen ◽  
C. R. Knospe ◽  
R. D. Flack

Inherent in the construction of many experimental apparatus designed to measure the hydro/aerodynamic forces of rotating machinery are features that contribute undesirable parasitic forces to the measured or test forces. Typically, these parasitic forces are due to seals, drive couplings, and hydraulic and/or inertial unbalance. To obtain accurate and sensitive measurement of the hydro/aerodynamic forces in these situations, it is necessary to subtract the parasitic forces from the test forces. In general, both the test forces and the parasitic forces will be dependent on the system operating conditions including the specific motion of the rotor. Therefore, to properly remove the parasitic forces the vibration orbits and operating conditions must be the same in tests for determining the hydro/aerodynamic forces and tests for determining the parasitic forces. This, in turn, necessitates a means by which the test rotor’s motion can be accurately controlled to an arbitrarily defined trajectory. Here in, an interrupt-driven multiple harmonic open-loop controller was developed and implemented on a laboratory centrifugal pump rotor supported in magnetic bearings (active load cells) for this purpose. This allowed the simultaneous control of subharmonic, synchronous, and superharmonic rotor vibration frequencies with each frequency independently forced to some user defined orbital path. The open-loop controller was implemented on a standard PC using commercially available analog input and output cards. All analog input and output functions, transformation of the position signals from the time domain to the frequency domain, and transformation of the open-loop control signals from the frequency domain to the time domain were performed in an interrupt service routine. Rotor vibration was attenuated to the noise floor, vibration amplitude ≈0.2 μm, or forced to a user specified orbital trajectory. Between the whirl frequencies of 14 and 2 times running speed, the orbit semi-major and semi-minor axis magnitudes were controlled to within 0.5% of the requested axis magnitudes. The ellipse angles and amplitude phase angles of the imposed orbits were within 0.3 deg and 1.0 deg, respectively, of their requested counterparts.


Author(s):  
Mansour Tabatabaie ◽  
Thomas Ballard

Dynamic soil-structure interaction (SSI) analysis of nuclear power plants is often performed in frequency domain using programs such as SASSI [1]. This enables the analyst to properly a) address the effects of wave radiation in an unbounded soil media, b) incorporate strain-compatible soil shear modulus and damping properties and c) specify input motion in the free field using the de-convolution method and/or spatially variable ground motions. For structures that exhibit nonlinearities such as potential base sliding and/or uplift, the frequency-domain procedure is not applicable as it is limited to linear systems. For such problems, it is necessary to solve the problem in the time domain using the direct integration method in programs such as ADINA [2]. The authors recently introduced a sub-structuring technique called distributed parameter foundation impedance (DPFI) model that allows the structure to be partitioned from the total SSI system and analyzed in the time domain while the foundation soil is modeled using the frequency-domain procedure [3]. This procedure has been validated for linear systems. In this paper we have expanded the DPFI model to incorporate nonlinearities at the soil/structure interface by introducing nonlinear shear and normal springs arranged in series between the DPFI and structure model. This combination of the linear far-field impedance (DPFI) plus nonlinear near-field soil springs allows the foundation sliding and/or uplift behavior be analyzed in time domain while maintaining the frequency-dependent stiffness and radiation damping nature of the far-field foundation impedance. To check the accuracy of this procedure, a typical NPP foundation mat supported at the surface of a layered soil system and subjected to harmonic forced vibration was first analyzed in the frequency domain using SASSI to calculate the target linear response and derive a linear, far-field DPFI model. The target linear solution was then used to validate two linear time-domain ADINA models: Model 1 consisting of the mat foundation+DPFI derived from the linear SASSI model and Model 2 consisting of the total SSI system (mat foundation plus a soil block). After linear alignment, the nonlinear springs were added to both ADINA models and re-analyzed in time domain. Model 2 provided the target nonlinear solution while Model 1 provided the results using the DPFI+nonlinear springs. By increasing the amplitude of the vibration load, different levels of foundation sliding were simulated. Good agreement between the results of two models in terms of the displacement response of the mat and cyclic force-displacement behavior of the springs validates the accuracy of the procedure presented herein.


2011 ◽  
Author(s):  
Aurélie Gazoty ◽  
Esben Auken ◽  
Jesper Pedersen ◽  
Gianluca Fiandaca ◽  
Anders Vest Christiansen

2021 ◽  
Vol 3 (1) ◽  
pp. 031-036
Author(s):  
S. A. GOROVOY ◽  
◽  
V. I. SKOROKHODOV ◽  
D. I. PLOTNIKOV ◽  
◽  
...  

This paper deals with the analysis of interharmonics, which are due to the presence of a nonlinear load. The tool for the analysis was a mathematical apparatus - wavelet packet transform. Which has a number of advantages over the traditional Fourier transform. A simulation model was developed in Simulink to simulate a non-stationary non-sinusoidal mode. The use of the wavelet packet transform will allow to determine the mode parameters with high accuracy from the obtained wavelet coefficients. It also makes it possible to obtain information, both in the frequency domain of the signal and in the time domain.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881346 ◽  
Author(s):  
Tabi Fouda Bernard Marie ◽  
Dezhi Han ◽  
Bowen An ◽  
Jingyun Li

To detect and recognize any type of events over the perimeter security system, this article proposes a fiber-optic vibration pattern recognition method based on the combination of time-domain features and time-frequency domain features. The performance parameters (event recognition, event location, and event classification) are very important and describe the validity of this article. The pattern recognition method is precisely based on the empirical mode decomposition of time-frequency entropy and center-of-gravity frequency. It implements the function of identifying and classifying the event (intrusions or non-intrusion) over the perimeter to secure. To achieve this method, the first-level prejudgment is performed according to the time-domain features of the vibration signal, and the second-level prediction is carried out through time-frequency analysis. The time-frequency distribution of the signal is obtained by empirical mode decomposition and Hilbert transform and then the time-frequency entropy and center-of-gravity frequency are used to form the time-frequency domain features, that is, combined with the time-domain features to form feature vectors. Multiple types of probabilistic neural networks are identified to determine whether there are intrusions and the intrusion types. The experimental results demonstrate that the proposed method is effective and reliable in identifying and classifying the type of event.


Sign in / Sign up

Export Citation Format

Share Document