field trials
Recently Published Documents


TOTAL DOCUMENTS

5805
(FIVE YEARS 1540)

H-INDEX

76
(FIVE YEARS 10)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 104
Author(s):  
Chaelynne E. Lohr ◽  
Kelly R. B. Sporer ◽  
Kelsey A. Brigham ◽  
Laura A. Pavliscak ◽  
Matelyn M. Mason ◽  
...  

Characterization of the bovine leukocyte antigen (BoLA) DRB3 gene has shown that specific alleles associate with susceptibility or resilience to the progression of bovine leukemia virus (BLV), measured by proviral load (PVL). Through surveillance of multi-farm BLV eradication field trials, we observed differential phenotypes within seropositive cows that persist from months to years. We sought to develop a multiplex next-generation sequencing workflow (NGS-SBT) capable of genotyping 384 samples per run to assess the relationship between BLV phenotype and two BoLA genes. We utilized longitudinal results from milk ELISA screening and subsequent blood collections on seropositive cows for PVL determination using a novel BLV proviral load multiplex qPCR assay to phenotype the cows. Repeated diagnostic observations defined two distinct phenotypes in our study population, ELISA-positive cows that do not harbor detectable levels of provirus and those who do have persistent proviral loads. In total, 565 cows from nine Midwest dairy farms were selected for NGS-SBT, with 558 cows: 168 BLV susceptible (ELISA-positive/PVL-positive) and 390 BLV resilient (ELISA-positive/PVL-negative) successfully genotyped. Three BoLA-DRB3 alleles, including one novel allele, were shown to associate with disease resilience, *009:02, *044:01, and *048:02 were found at rates of 97.5%, 86.5%, and 90.3%, respectively, within the phenotypically resilient population. Alternatively, DRB3*015:01 and *027:03, both known to associate with disease progression, were found at rates of 81.1% and 92.3%, respectively, within the susceptible population. This study helps solidify the immunogenetic relationship between BoLA-DRB3 alleles and BLV infection status of these two phenotypic groupings of US dairy cattle.


2022 ◽  
Vol 14 (2) ◽  
pp. 9
Author(s):  
Daniel M. Kalala ◽  
Victor Shitumbanuma ◽  
Benson H. Chishala ◽  
Alice M. Mweetwa ◽  
Andreas Fliessbach

For studying the effect of soil fertility management practices on N mineralization, urease activity and maize yield, replicated field trials were established in 2015 at Misamfu and Msekera agricultural research stations (ARS) representing two geo-climatic regions of Zambia. The soil at Msekera ARS is a sandy clay loam (SCL) from a Paleustult, while that at Misamfu is a loamy sand (LS) from a Kandiustult. The field trials had three categories of treatments namely legumes, traditional and conventional. The legumes group consisted of researcher-recommended legume-cereal intercrop systems of maize with Cajanus cajan, Crotalaria juncea and Tephrosia vogelii in combination with compound D (10% N, 20% P2O5, 10% K2O) and urea (46% N) at the recommended rate (200 kg ha-1) and half of the recommended rate (100 kg ha-1). Composted cattle manure and Fundikila, a special plant biomass management technique, were the inputs under the traditional category. The conventional category consisted of a treatment to which only chemical fertilizer was applied. Urease activity was determined in surface soil samples (0-20 cm) collected from the field trials after 3 years. For N mineralization, a laboratory incubation study was conducted over 13 weeks. For the laboratory incubation, an additional treatment to which no input was applied was included as control. Application of organic inputs significantly increased the potentially mineralizable N (No) by 127% to 256% on the LS and by 51% to 131% on the SCL in comparison to the control. Similarly, the cumulative N mineralized (Ncum) was twice or thrice higher where organic inputs had been applied in comparison to the control. The No followed the order traditional > legumes > conventional > control, while the mineralization rate constant (k) followed the order legumes > conventional > traditional > control on both soils. The rate of N mineralization was significantly higher on the LS than the SCL. Higher rates of chemical fertilizer resulted in high Ncum and higher maize yield. Maize yield was significantly and positively correlated to Ncum, but inversely correlated to the amount of applied N that was mineralized (%Nmin). Urease activity was stimulated by application of organic inputs and suppressed by higher rates of chemical fertilizers. The type of organic inputs; the rate of chemical fertilizers; and soil texture are factors influencing N mineralization and maize yield. Urease activity was largely influenced by the rate of chemical fertilizer, but not the type of organic inputs or soil texture.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 191
Author(s):  
Jan Adriaan Reijneveld ◽  
Martijn Jasper van Oostrum ◽  
Karst Michiel Brolsma ◽  
Dale Fletcher ◽  
Oene Oenema

Conventional soil tests are commonly used to assess single soil characteristics. Thus, many different tests are needed for a full soil fertility/soil quality assessment, which is laborious and expensive. New broad-spectrum soil tests offer the potential to assess many soil characteristics quickly, but often face challenges with calibration, validation, and acceptance in practice. Here, we describe the results of a 20 year research program aimed at overcoming the aforementioned challenges. A three-step approach was applied: (1) selecting and establishing two contrasting rapid broad-spectrum soil tests, (2) relating the results of these new tests to the results of conventional soil tests for a wide variety of soils, and (3) validating the results of the new soil tests through field trials and communicating the results. We selected Near Infrared Spectroscopy (NIRS) and multi-nutrient 0.01 M CaCl2 extraction (1:10 soil to solution ratio; w/v) as broad-spectrum techniques. NIRS was extensively calibrated and validated for the physical, chemical, and biological characteristics of soil. The CaCl2 extraction technique was extensively calibrated and validated for ‘plant available’ nutrients, often in combination with the results of NIRS. The results indicate that the accuracy of NIRS determinations is high for SOM, clay, SOC, ECEC, Ca-CEC, N-total, sand, and inorganic-C (R2 ≥ 0.95) and good for pH, Mg-CEC, and S-total (R2 ≥ 0.90). The combination of the CaCl2 extraction technique and NIRS gave results that related well (R2 > 0.80) to the results of conventional soil tests for P, K, Mg, Na, Mn, Cu, Co, and pH. In conclusion, the three-step approach has revolutionized soil testing in The Netherlands. These two broad-spectrum soil tests have improved soil testing; have contributed to increased insights into the physical, chemical, and biological characteristics of soil; and have thereby led to more sustainable soil management and cropping systems.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 187
Author(s):  
Fernando Martínez-Moreno ◽  
Patricia Giraldo ◽  
Cristina Nieto ◽  
Magdalena Ruiz

A collection of 84 bread wheat Spanish landraces were inoculated with three isolates of leaf rust and one of yellow rust at the seedling stage in controlled conditions. The latency period of leaf rust on the susceptible landraces was also assessed. An extended collection of 149 landraces was planted in three locations in field trials to evaluate the naturally occurring leaf and yellow rust severity. Several landraces (36) were resistant to one leaf rust isolate at the seedling stage, but only one was resistant to all three isolates. Landraces resistant to PG14 leaf rust isolate originated from areas with higher precipitation and more uniform temperatures. Many resistant landraces were from the north-west zone of Spain, a region with high precipitation and uniform temperatures. Results from the field trials also confirmed this trend. Landraces from the north-west also possessed a longer latency period of leaf rust, an important component of partial resistance. Regarding yellow rust, 16 landraces showed a lower disease severity in the seedling tests. Again, the resistant landraces mostly originated from areas with higher precipitation (especially in winter) and more uniform temperature.


Author(s):  
Darcy E. P. Telenko ◽  
Martin I. Chilvers ◽  
Adam Byrne ◽  
Jill Check ◽  
Camila Rocco Da Silva ◽  
...  

Tar spot of corn caused by Phyllachora maydis has recently led to significant yield losses in the eastern corn belt of the Midwestern United States. Foliar fungicides containing quinone outside inhibitors(QoI), demethylation inhibitors(DMI), and succinate dehydrogenase inhibitors(SDHI) are commonly used to manage foliar diseases in corn. To mitigate the losses from tar spot thirteen foliar fungicides containing single or multiple modes of action (MOA/FRAC groups) were applied at their recommended rates in a single application at the standard tassel/silk growth stage timing to evaluate their efficacy against tar spot in a total of eight field trials in Illinois, Indiana, Michigan, and Wisconsin during 2019 and 2020. The single MOA fungicides included either a QoI or DMI. The dual MOA fungicides included a DMI with either a QoI or SDHI, and fungicides containing three MOAs included a QoI, DMI, and SDHI. Tar spot severity estimated as the percentage of leaf area covered by P. maydis stroma of the non-treated control at dent growth stage ranged from 1.6 to 23.3% on the ear leaf. Averaged across eight field trials all foliar fungicide treatments reduced tar spot severity, but only prothioconazole+trifloxystrobin, mefentrifluconazole+pyraclostrobin+fluxapyroxad, and mefentrifluconazole+pyraclostrobin significantly increased yield over the non-treated control. When comparing fungicide treatments by the number of MOAs foliar fungicide products that had two or three MOAs decreased tar spot severity over not treating and products with one MOA. The fungicide group that contained all three MOAs significantly increased yield over not treating with a fungicide or using a single MOA.


Euphytica ◽  
2022 ◽  
Vol 218 (2) ◽  
Author(s):  
Jan Bocianowski ◽  
Roman Prażak

AbstractThis study estimated the genotype × environment interactions for ten yield associated traits in advanced generation hybrids of several cultivars of common wheat (Triticum aestivum L.) with Aegilops kotschyi Boiss. and A. variabilis Eig. using the additive main effects and multiplicative interaction (AMMI) models. Tests were ran over five years at one location in replicated field trials. The AMMI model showed significant genotypic and environmental effects for all analysed traits. A majority of the hybrid lines were less stable in the analysed traits than their parental wheats. The older wheat cultivars, with lower environmental sensitivity, were the most stable. The best total genotype selection index, for all ten traits combined, was observed for the oldest cvs. Gama and Rusałka, and among the hybrid lines, for Ae. kotschyi/Rusałka//Smuga and Ae. kotschyi/Rusałka//Muza. The lines Ae. kotschyi/Rusałka//Smuga, Ae. kotschyi/Rusałka//Muza, Ae. kotschyi/Rusałka//Korweta, Ae. kotschyi/Rusałka//Begra///Smuga, and Ae. kotschyi/Rusałka//Begra///Turnia are recommended for inclusion in breeding programmes due to their greater stability and the good average values for the observed traits.


2022 ◽  
Vol 354 (11-12) ◽  
pp. 129-133
Author(s):  
A. Yu. Kekalo

Protecting wheat seed from phytopathogens is a popular topic for plant breeders. The objects requiring close attention and control on wheat are smut infections, pathogens of root rot. And if the pathogens of smut we have learned to fight quite effectively with, then microorganisms that infect underground parts of plants are controlled with less success and many questions in the system of protection against them remain controversial. The issue of reducing the pesticide load on agrocenoses, starting with the protection of seeds, also remains relevant. The article presents the results of field trials of means of protecting spring wheat seeds from root rot in 2019–2020, carried out within the framework of the state assignment at the Kurgan SRIA — branch of FSBSI UrFASRC, according to generally accepted methods. The aim of the research was to assess the biological, economic efficiency of the combined use of a chemical seed dressing agent and a biofungicide based on Bacillus subtilis in protecting wheat from soil-seed infections, to determine the competitiveness of an ecologized method of protecting seeds (reduced consumption rate of a chemical seed dressing agent in combination with biological fungicide). The obtained research results indicate that with a high level of damage to wheat by root rot (Fusarium, B. sorokiniana), the use of seed treatment with the studied preparations ensured the preservation of 10–12% of the yield, more efficiency was noted in the variants with the Oplot 0.5 l/t and the Oplot 0.3 l/t + Nodix Premium 0.3 l/t . The technical effectiveness of fungicides against wheat root rot ranged 44% for Nodix Premium to 85–86% for chemical protection and mixed use. An environmentally friendly method of protecting wheat seeds, which consists in using a 40% lower rate of a chemical dressing agent with a biopesticide, turned out to be competitive.


2022 ◽  
Author(s):  
Khalid Fahad Almulhem ◽  
Ataur Malik ◽  
Mustafa Ghazwi

Abstract Acid Fracturing has been one of the most effective stimulation technique applied in the carbonate formations to enhance oil and gas production. The traditional approach to stimulate the carbonate reservoir has been to pump crosslinked gel and acid blends such as plain 28% HCL, emulsified acid (EA) and in-situ gelled acid at fracture rates in order to maximize stimulated reservoir volume with desired conductivity. With the common challenges encountered in fracturing carbonate formations, including high leak-off and fast acid reaction rates, the conventional practice of acid fracturing involves complex pumping schemes of pad, acid and viscous diverter fluid cycles to achieve fracture length and conductivity targets. A new generation of Acid-Based Crosslinked (ABC) fluid system has been deployed to stimulate high temperature carbonate formations in three separate field trials aiming to provide rock-breaking viscosity, acid retardation and effective leak-off control. The ABC fluid system has been progressively introduced, initially starting as diverter / leak off control cycles of pad and acid stages. Later it was used as main acid-based fluid system for enhancing live acid penetration, diverting and reducing leakoff as well as keeping the rock open during hydraulic fracturing operation. Unlike in-situ crosslinked acid based system that uses acid reaction by products to start crosslinking process, the ABC fluid system uses a unique crosslinker/breaker combination independent of acid reaction. The system is prepared with 20% hydrochloric acid and an acrylamide polymer along with zirconium metal for delayed crosslinking in unspent acid. The ABC fluid system is aimed to reduced three fluid requirements to one by eliminating the need for an intricate pumping schedule that otherwise would include: a non-acid fracturing pad stage to breakdown the formation and generate the targeted fracture geometry; a retarded emulsified acid system to achieve deep penetrating, differently etched fractures, and a self-diverting agent to minimize fluid leak-off. This paper describes all efforts behind the introduction of this novel Acid-Based Crossliked fluid system in different field trials. Details of the fluid design optimization are included to illustrate how a single system can replace the need for multiple fluids. The ABC fluid was formulated to meet challenging bottom-hole formation conditions that resulted in encouraging post treatment well performance.


Sign in / Sign up

Export Citation Format

Share Document