scholarly journals Does biochar enhance soil organic matter formation in tropical soils?

2021 ◽  
Vol 648 (1) ◽  
pp. 012195
Author(s):  
L S Schnee ◽  
A Ngakou ◽  
J Filser
2021 ◽  
pp. 108302
Author(s):  
Gerrit Angst ◽  
Jan Pokorný ◽  
Carsten W. Mueller ◽  
Isabel Prater ◽  
Sebastian Preusser ◽  
...  

2021 ◽  
Vol 770 ◽  
pp. 145307
Author(s):  
Mohammad Bahadori ◽  
Chengrong Chen ◽  
Stephen Lewis ◽  
Sue Boyd ◽  
Mehran Rezaei Rashti ◽  
...  

2017 ◽  
Vol 345 ◽  
pp. 113-124 ◽  
Author(s):  
Alexander Komarov ◽  
Oleg Chertov ◽  
Sergey Bykhovets ◽  
Cindy Shaw ◽  
Marina Nadporozhskaya ◽  
...  

2021 ◽  
pp. 108447
Author(s):  
Luís F.J. Almeida ◽  
Ivan F. Souza ◽  
Luís C.C. Hurtarte ◽  
Pedro Paulo Teixeira ◽  
Thiago M. Inagaki ◽  
...  

2019 ◽  
Vol 16 (6) ◽  
pp. 1225-1248 ◽  
Author(s):  
Andy D. Robertson ◽  
Keith Paustian ◽  
Stephen Ogle ◽  
Matthew D. Wallenstein ◽  
Emanuele Lugato ◽  
...  

Abstract. Soil organic matter (SOM) dynamics in ecosystem-scale biogeochemical models have traditionally been simulated as immeasurable fluxes between conceptually defined pools. This greatly limits how empirical data can be used to improve model performance and reduce the uncertainty associated with their predictions of carbon (C) cycling. Recent advances in our understanding of the biogeochemical processes that govern SOM formation and persistence demand a new mathematical model with a structure built around key mechanisms and biogeochemically relevant pools. Here, we present one approach that aims to address this need. Our new model (MEMS v1.0) is developed from the Microbial Efficiency-Matrix Stabilization framework, which emphasizes the importance of linking the chemistry of organic matter inputs with efficiency of microbial processing and ultimately with the soil mineral matrix, when studying SOM formation and stabilization. Building on this framework, MEMS v1.0 is also capable of simulating the concept of C saturation and represents decomposition processes and mechanisms of physico-chemical stabilization to define SOM formation into four primary fractions. After describing the model in detail, we optimize four key parameters identified through a variance-based sensitivity analysis. Optimization employed soil fractionation data from 154 sites with diverse environmental conditions, directly equating mineral-associated organic matter and particulate organic matter fractions with corresponding model pools. Finally, model performance was evaluated using total topsoil (0–20 cm) C data from 8192 forest and grassland sites across Europe. Despite the relative simplicity of the model, it was able to accurately capture general trends in soil C stocks across extensive gradients of temperature, precipitation, annual C inputs and soil texture. The novel approach that MEMS v1.0 takes to simulate SOM dynamics has the potential to improve our forecasts of how soils respond to management and environmental perturbation. Ensuring these forecasts are accurate is key to effectively informing policy that can address the sustainability of ecosystem services and help mitigate climate change.


Soil Research ◽  
2002 ◽  
Vol 40 (1) ◽  
pp. 161 ◽  
Author(s):  
A. Möller ◽  
K. Kaiser ◽  
N. Kanchanakool ◽  
C. Anecksamphant ◽  
W. Jirasuktaveekul ◽  
...  

Sulfur, besides phosphorus, is crucial for the nutrition of plants on tropical soils. Its availability is closely related to the turnover of soil organic matter. To get a better insight into transformation of soil S forms during the decomposition of organic matter, we studied inorganic and organic S pools in bulk samples and alkaline extracts of soils under different land uses representative of the tropical highlands of northern Thailand. Samples were taken from a cabbage cultivation, a Pinus reforestation, a secondary forest, and a primary forest. Total S ranged from 483 549 mg/kg in the subsoil to 1909 376 mg/kg in the organic layers, which is relatively high for tropical soils. The major S component in soil was organic S, comprising 75–99% of total S. Organic S was significantly correlated with total S, organic C, and total N, indicating that there is a close relationship between C, N, and S cycling in soil. C-bonded S was the predominant form in the topsoils (35–99% of total S) but its presence decreased with soil depth. The maximum concentrations of ester SO4-S were found in the A horizons (128 49 mg/kg), whereas the concentrations of inorganic SO4-S were small in all horizons. Compared with the forest site, the cabbage cultivation site was strongly depleted in S. C-bonded S was more depleted than ester SO4-S. A comparison of the S forms in NaOH extracts with S forms in bulk soil and C forms as indicated by 13C-NMR spectroscopy showed (i) that the extracts were very representative of soil organic S fractions and (ii) that ester SO4-S was mainly associated with O-substituted aliphatic C. In contrast, C-bonded S seemed to be connected to more-or-less all C binding types. transformation of soil organic matter, sulfate.


2016 ◽  
Vol 76 ◽  
pp. 92-94
Author(s):  
Daniel Epron ◽  
Sogni Viviane Tchichelle ◽  
Yann Nouvellon ◽  
Louis Mareschal ◽  
Lydie-Stella Koutika

1995 ◽  
Vol 26 (11-12) ◽  
pp. 1749-1760 ◽  
Author(s):  
E. Gavinelli ◽  
C. Feller ◽  
M.C. Larré‐Larrouy ◽  
B. Bacye ◽  
N. Djegui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document