organic s
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
pp. 2100317
Author(s):  
Chang Cheng ◽  
Bowen He ◽  
Jiajie Fan ◽  
Bei Cheng ◽  
Shaowen Cao ◽  
...  

Author(s):  
Fien Degryse ◽  
Roslyn Baird ◽  
Ivan Andelkovic ◽  
Michael J. McLaughlin

AbstractIn previous studies, we assessed sulfur (S) uptake by crops from elemental S (ES) and sulfate-S (SO4-S) in S-fortified monoammonium phosphate fertilizers over two years. The recovery by the crop ranged from 16 to 28% for ES and from 9 to 86% for SO4-S. Here, we used a model which takes into account organic S cycling, SO4-S leaching and ES oxidation to explain the observed recoveries. Higher recoveries of ES than SO4-S in two of the four sites could be explained by partial leaching of SO4-S and relatively fast oxidation of ES, due to a warm climate and high S-oxidizing soils. The same model was used for longer-term (5-year) predictions, and a sensitivity analysis was carried out. The size of the labile soil S pool and total S uptake strongly affected the recovery of both SO4-S and ES. Predicted recoveries after 5 years were over threefold higher for a small than for a large labile organic S pool and for a high-uptake than for a low-uptake scenario. Leaching mainly affected SO4-S, with predicted recoveries halved under a high-leaching scenario. Slow oxidation resulted in recoveries in the first year being fourfold lower for ES than for SO4-S or even lower in case of a long lag-time. However, it is predicted that total recoveries of ES will eventually reach those of SO4-S or exceed them if there is SO4-S leaching. Our model demonstrates that long-term trials are needed to evaluate the true effectiveness of a slow-release fertilizer source such as ES.


2020 ◽  
Vol 149 ◽  
pp. 107943 ◽  
Author(s):  
Qingxu Ma ◽  
Yuan Wen ◽  
Wankun Pan ◽  
Andy Macdonald ◽  
Paul W. Hill ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Assylay Kurmanbayeva ◽  
Aizat Bekturova ◽  
Aigerim Soltabayeva ◽  
Sudhakar Srivastava ◽  
Dinara Oshanova ◽  
...  

ABSTRACTThe role of the cytosolic O-acetylserine-(thiol) lyase A (OASTLA), chloroplastic OASTLB and mitochondrion OASTLC in plant resistance/sensitivity to selenate was studied in Arabidopsis plants. Impairment in OASTLA and B resulted in reduced biomass, chlorophyll and soluble protein levels compared with impaired OASTL C and Wild-Type treated with selenate. The lower organic-Se and protein-Se levels followed by decreased organic-S, S in proteins and total glutathione in oastlA and oastlB compared to Wild-Type and oastlC are indicative that Se accumulation is not the main cause for the stress symptoms, but rather the interference of Se with the S-reduction pathway. The increase in sulfite oxidase, adenosine 5′-phosphosulfate reductase, sulfite reductase and OASTL activity levels, followed by enhanced sulfite and sulfide, indicate a futile anabolic S-starvation response to selenate-induced organic-S catabolism in oastlA and oastlB compared to Wild-Type and oastlC.Additionally, the catabolic pathway of L-cysteine degradation was enhanced by selenate, and similar to L-cysteine producing activity, oastlA and B exhibited a significant decrease in L-cysteine desulfhydrase (DES) activity, compared with WT, indicating a major role of OASTLs in L-cysteine degradation. This notion was further evidenced by sulfide dependent DES in-gel activity, immunoblotting, immunoprecipitation with specific antibodies and identification of unique peptides in activity bands generated by OASTLA, B and C. Similar responses of the OASTLs in Seleno-Cysteine degradation was demonstrated in selenate stressed plants. Notably, no L-cysteine and L-Seleno-Cysteine DES activity bands but those related to OASTLs were evident. These results indicate the significance of OASTLs in degrading L-cysteine and L-SelenoCysteine in Arabidopsis.SummaryThe cytosolic OASTLA and chloroplastic OASTLB have significantly higher desulfhydrase activity rates than the cytosolic DES1 and are able to degrade L-Cys and L-SeCys to sulfide and selenide, respectively in Arabidopsis.


2020 ◽  
Vol 0 (0) ◽  
pp. 2010030-0
Author(s):  
Xibao Li ◽  
Jiyou Liu ◽  
Juntong Huang ◽  
Chaozheng He ◽  
Zhijun Feng ◽  
...  

2019 ◽  
Vol 85 (24) ◽  
Author(s):  
Justin J. Speck ◽  
Euan K. James ◽  
Masayuki Sugawara ◽  
Michael J. Sadowsky ◽  
Prasad Gyaneshwar

ABSTRACT Sulfur (S)-containing molecules play an important role in symbiotic nitrogen fixation and are critical components of nitrogenase and other iron-S proteins. S deficiency inhibits symbiotic nitrogen fixation by rhizobia. However, despite its importance, little is known about the sources of S that rhizobia utilize during symbiosis. We previously showed that Bradyrhizobium diazoefficiens USDA110T can assimilate both inorganic and organic S and that genes involved in organic S utilization are expressed during symbiosis. Here, we show that a B. diazoefficiens USDA110T mutant with a sulfonate monooxygenase (ssuD) insertion is defective in nitrogen fixation. Microscopy analyses revealed that the ΔssuD mutant was defective in root hair infection and that ΔssuD mutant bacteroids showed degradation compared to the wild-type strain. Moreover, the ΔssuD mutant was significantly more sensitive to hydrogen peroxide-mediated oxidative stress than the wild-type strain. Taken together, these results show that the ability of rhizobia to utilize organic S plays an important role in symbiotic nitrogen fixation. Since nodules have been reported to be an important source of reduced S used during symbiosis and nitrogen fixation, further research will be needed to determine the mechanisms involved in the regulation of S assimilation by rhizobia. IMPORTANCE Rhizobia form symbiotic associations with legumes that lead to the formation of nitrogen-fixing nodules. Sulfur-containing molecules play a crucial role in nitrogen fixation; thus, the rhizobia inside nodules require large amounts of sulfur. Rhizobia can assimilate both inorganic (sulfate) and organic (sulfonates) sources of sulfur. However, very little is known about rhizobial sulfur metabolism during symbiosis. In this report, we show that sulfonate utilization by Bradyrhizobium diazoefficiens is important for symbiotic nitrogen fixation in both soybean and cowpea. The symbiotic defect is probably due to increased sensitivity to oxidative stress from sulfur deficiency in the mutant strain defective for sulfonate utilization. The results of this study can be extended to other rhizobium-legume symbioses, as sulfonate utilization genes are widespread in these bacteria.


Sign in / Sign up

Export Citation Format

Share Document