scholarly journals Fabrication and Investigation of Bioceramic Scaffolds by a Polymer Sponge Replication Technique

2021 ◽  
Vol 1076 (1) ◽  
pp. 012080
Author(s):  
Auday A. Mehatlaf ◽  
Saad B. H. Farid ◽  
Alaa A. Atiyah
2013 ◽  
Vol 1 (4) ◽  
Author(s):  
J. Zhang ◽  
J.-C. Gelin ◽  
M. Sahli ◽  
T. Barrière

Hot embossing process has emerged as a viable method for producing small, complex, precision parts in low volumes. It provides several advantages such as low-cost for molds, high replication accuracy for microfeatures and simple operation. The adaptation of this process for producing high fidelity hot embossed feedstock based metallic powders without the need for machining of the die mold is outlined. This was achieved through a combination of powder metallurgy and plastic hot embossing technologies to produce net-shape metal or hard materials components. In this paper, the manufacturing of molds that are suitable for the production of microfluidic systems using the replication technique is discussed. Variations of parameters in the replication process were investigated. An experimental rheological study was performed to evaluate the influence of the mixing parameters on the rheological behavior and thermal stability of 316L stainless steel feedstock. The effects of the solid loading on the feedstock rheological properties and tolerance control as well as mechanical properties and microstructures were investigated.


2007 ◽  
Vol 22 (7) ◽  
pp. 1839-1848 ◽  
Author(s):  
J. Jiang ◽  
W.J. Meng ◽  
G.B. Sinclair ◽  
E. Lara-Curzio

Replication of metallic high-aspect-ratio microscale structures (HARMS) by compression molding has been demonstrated recently. Molding replication of metallic HARMS can potentially lead to low-cost fabrication of a wide variety of metal-based microdevices. Understanding the mechanics of metal micromolding is critical for assessing the capabilities and limitations of this replication technique. This paper presents results of instrumented micromolding of Al. Measured molding response was rationalized with companion high-temperature tensile testing of Al using a simple mechanics model of the micromolding process. The present results suggest that resisting pressure on the mold insert during micromolding is governed primarily by the yield stress of the molded metal at the molding temperature and a frictional traction on the sides of the insert. The influence of strain rate is also considered.


2020 ◽  
Author(s):  
Pallavi Kumari ◽  
Tali Sayas ◽  
Patricia Bucki ◽  
Sigal Brown Miyara ◽  
Maya Kleiman

AbstractStudying the interactions between microorganisms and plant roots is crucial for understanding a variety of phenomena concerning crop yield and health. The role of root surface properties in these interactions, is rarely addressed. To this end, we previously built a synthetic system, from the inert polymer polydimethyl siloxane (PDMS), mimicking the root surface microstructure, using a replication technique. This replica enables the study of isolated effects of surface structure on microorganism-plant interactions. Since the root surface is composed mostly of cellulose, using cellulose-like materials as our replica, instead of PDMS, is the next logical step. This will enable following the hydrolysis of such surfaces as a result of microorganisms secreting Plant Cell Wall Degrading Enzymes (PCWDE), and in particular, cellulase. Visualization of such hydrolysis in a synthetic system can assist in studying the localization and activity of microorganisms and how they correlate with surface microtopography, separately from chemical plant signals.In this work, we modified the known carboxymethyl cellulase (CMC) hydrolysis visualization method to enable real-time tracking of cellulase activity of microorganisms on the surface. Surface was formed from pure CMC, rather than CMC incorporated in agar as is often done, and by that, eliminating diffusion issues. Acridine orange dye, which is compatible, at low concentrations, with microorganisms, as opposed to other routinely used dyes, was incorporated into the film. The dye disassociated from the film when hydrolysis occurred, forming a halo surrounding the point of hydrolysis. This enabled real-time visualization since the common need for post hydrolysis dyeing was negated. Using Root Knot Nematode (RKN) as a model organism that penetrates the plant root, we showed it was possible to follow microorganism cellulase secretion on the surface in the form of CMC film hydrolysis. Furthermore, the addition of natural additives, in the form of root extract was also shown to be an option and resulted in an increased RKN response. We tested our newly developed method by changing temperature and pH conditions and by characterization of the hydrolyzed surface using both Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM).This method will be implemented in the future on a root surface microstructure replica. We believe the combination of this new method with our previously developed root surface microstructure replication technique can open a new avenue of research in the field of plant root-microorganism interactions.


2015 ◽  
Vol 35 (6) ◽  
pp. 1905-1914 ◽  
Author(s):  
Abdul Rashid Jamaludin ◽  
Shah Rizal Kasim ◽  
Ahmad Kamal Ismail ◽  
Mohd Zukifly Abdullah ◽  
Zainal Arifin Ahmad

Author(s):  
Ghalem Belalem ◽  
Naima Belayachi ◽  
Radjaa Behidji ◽  
Belabbes Yagoubi

Data grids are current solutions to the needs of large scale systems and provide a set of different geographically distributed resources. Their goal is to offer an important capacity of parallel calculation, ensure a data effective and rapid access, improve the availability, and tolerate the breakdowns. In such systems, however, these advantages are possible only by using the replication technique. The use of this technique raises the problem of maintaining consistency of replicas of the same data set. In order to guarantee replica set reliability, it is necessary to have high coherence. This fact, however, penalizes performance. In this paper, the authors propose studying balancing influence on replica quality. For this reason, a service of hybrid consistency management is developed, which combines the pessimistic and optimistic approaches and is extended by a load balancing service to improve service quality. This service is articulated on a hierarchical model with two levels.


2013 ◽  
Vol 5 (2) ◽  
pp. 54-71 ◽  
Author(s):  
Jyh-Biau Chang ◽  
Po-Cheng Chen ◽  
Ce-Kuen Shieh ◽  
Jia-Hao Yang ◽  
Sheng-Hung Hsieh

Efficient information sharing is difficult to achieve in the scenario of emergency and rescue operations because there is no communication infrastructure at the disaster sites. In general, the network condition is relatively reliable in the intra-site environment but relatively unreliable in the inter-site environment. The network partitioning problem may occur between two sites. Although one can exploit the replication technique used in data grid to improve the information availability in emergency and rescue applications, the data consistency problem occurs between replicas. In this paper, the authors propose a middleware called “Seagull” to transparently manage the data availability and consistency issues of emergency and rescue applications. Seagull adopts the optimistic replication scheme to provide the higher data availability in the inter-site environment. It also adopts the pessimistic replication scheme to provide the stronger data consistency guarantee in the intra-site environment. Moreover, it adopts an adaptive consistency granularity strategy that achieves the better performance of the consistency management because this strategy provides the higher parallelism when the false sharing happens. Lastly, Seagull adopts the transparency data consistency management scheme, and thus the users do not need to modify their source codes to run on the Seagull.


Sign in / Sign up

Export Citation Format

Share Document