scholarly journals A simplified growth line replication technique

1978 ◽  
Vol 112 ◽  
pp. 155-159
Author(s):  
S Cane ◽  
J Stockton
2013 ◽  
Vol 1 (4) ◽  
Author(s):  
J. Zhang ◽  
J.-C. Gelin ◽  
M. Sahli ◽  
T. Barrière

Hot embossing process has emerged as a viable method for producing small, complex, precision parts in low volumes. It provides several advantages such as low-cost for molds, high replication accuracy for microfeatures and simple operation. The adaptation of this process for producing high fidelity hot embossed feedstock based metallic powders without the need for machining of the die mold is outlined. This was achieved through a combination of powder metallurgy and plastic hot embossing technologies to produce net-shape metal or hard materials components. In this paper, the manufacturing of molds that are suitable for the production of microfluidic systems using the replication technique is discussed. Variations of parameters in the replication process were investigated. An experimental rheological study was performed to evaluate the influence of the mixing parameters on the rheological behavior and thermal stability of 316L stainless steel feedstock. The effects of the solid loading on the feedstock rheological properties and tolerance control as well as mechanical properties and microstructures were investigated.


2007 ◽  
Vol 22 (7) ◽  
pp. 1839-1848 ◽  
Author(s):  
J. Jiang ◽  
W.J. Meng ◽  
G.B. Sinclair ◽  
E. Lara-Curzio

Replication of metallic high-aspect-ratio microscale structures (HARMS) by compression molding has been demonstrated recently. Molding replication of metallic HARMS can potentially lead to low-cost fabrication of a wide variety of metal-based microdevices. Understanding the mechanics of metal micromolding is critical for assessing the capabilities and limitations of this replication technique. This paper presents results of instrumented micromolding of Al. Measured molding response was rationalized with companion high-temperature tensile testing of Al using a simple mechanics model of the micromolding process. The present results suggest that resisting pressure on the mold insert during micromolding is governed primarily by the yield stress of the molded metal at the molding temperature and a frictional traction on the sides of the insert. The influence of strain rate is also considered.


2020 ◽  
Author(s):  
Pallavi Kumari ◽  
Tali Sayas ◽  
Patricia Bucki ◽  
Sigal Brown Miyara ◽  
Maya Kleiman

AbstractStudying the interactions between microorganisms and plant roots is crucial for understanding a variety of phenomena concerning crop yield and health. The role of root surface properties in these interactions, is rarely addressed. To this end, we previously built a synthetic system, from the inert polymer polydimethyl siloxane (PDMS), mimicking the root surface microstructure, using a replication technique. This replica enables the study of isolated effects of surface structure on microorganism-plant interactions. Since the root surface is composed mostly of cellulose, using cellulose-like materials as our replica, instead of PDMS, is the next logical step. This will enable following the hydrolysis of such surfaces as a result of microorganisms secreting Plant Cell Wall Degrading Enzymes (PCWDE), and in particular, cellulase. Visualization of such hydrolysis in a synthetic system can assist in studying the localization and activity of microorganisms and how they correlate with surface microtopography, separately from chemical plant signals.In this work, we modified the known carboxymethyl cellulase (CMC) hydrolysis visualization method to enable real-time tracking of cellulase activity of microorganisms on the surface. Surface was formed from pure CMC, rather than CMC incorporated in agar as is often done, and by that, eliminating diffusion issues. Acridine orange dye, which is compatible, at low concentrations, with microorganisms, as opposed to other routinely used dyes, was incorporated into the film. The dye disassociated from the film when hydrolysis occurred, forming a halo surrounding the point of hydrolysis. This enabled real-time visualization since the common need for post hydrolysis dyeing was negated. Using Root Knot Nematode (RKN) as a model organism that penetrates the plant root, we showed it was possible to follow microorganism cellulase secretion on the surface in the form of CMC film hydrolysis. Furthermore, the addition of natural additives, in the form of root extract was also shown to be an option and resulted in an increased RKN response. We tested our newly developed method by changing temperature and pH conditions and by characterization of the hydrolyzed surface using both Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM).This method will be implemented in the future on a root surface microstructure replica. We believe the combination of this new method with our previously developed root surface microstructure replication technique can open a new avenue of research in the field of plant root-microorganism interactions.


2015 ◽  
Vol 35 (6) ◽  
pp. 1905-1914 ◽  
Author(s):  
Abdul Rashid Jamaludin ◽  
Shah Rizal Kasim ◽  
Ahmad Kamal Ismail ◽  
Mohd Zukifly Abdullah ◽  
Zainal Arifin Ahmad

2021 ◽  
Author(s):  
Yuji Sano ◽  
Tomoyo Okumura ◽  
Naoko Murakami-Sugihara ◽  
Kentaro Tanaka ◽  
Takanori Kagoshima ◽  
...  

Abstract We report here hourly variations of Mg/Ca, Sr/Ca and Ba/Ca ratios in a Mediterranean mussel shell (Mytilus galloprovincialis) collected at the Otsuchi bay, on the Pacific coast of northeastern Japan. This bivalve was living in the intertidal zone, where such organisms are known to form a daily or bidaily growth line comprised of abundant organic matter. Mg/Ca ratios of the inner surface of the outer shell layer, corresponding to the most recent date, show cyclic changes at 25-90 mm intervals, while no valuable variations are observed in Sr/Ca and Ba/Ca ratios. High Mg/Ca ratios were probably established when the bivalve was located at low tide with a reduced supply of Ca from seawater. Immediately following the great tsunami induced by the 2011 Tohoku earthquake, Mg/Ca enrichment occurred, up to 10 times that of normal low tide, while apparent Ba/Ca enrichment was observed for only a few days following the event, implementing a proxy of the past tsunami. Following the tsunami, periodic peaks and troughs in Mg/Ca continued, perhaps due to a biological memory effect as an endogenous clock.


Sign in / Sign up

Export Citation Format

Share Document