scholarly journals Buckling analysis of plain-woven fabric structure using shell element and a one cell-based integration scheme in smoothed finite element method

Author(s):  
Q T Nguyen ◽  
A J P Gomes ◽  
F B N Ferreira
2011 ◽  
Vol 15 (2) ◽  
pp. 347-361 ◽  
Author(s):  
Chien Thai-Hoang ◽  
Nhon Nguyen-Thanh ◽  
Hung Nguyen-Xuan ◽  
Timon Rabczuk ◽  
Stephane Bordas

2009 ◽  
Vol 76 (5) ◽  
Author(s):  
Jeong-Hoon Song ◽  
Ted Belytschko

A finite element method for the simulation of dynamic cracks in thin shells and its applications to quasibrittle fracture problem are presented. Discontinuities in the translational and angular velocity fields are introduced to model cracks by the extended finite element method. The proposed method is implemented for the Belytschko–Lin–Tsay shell element, which has high computational efficiency because of its use of a one-point integration scheme. Comparisons with elastoplastic crack propagation experiments involving quasibrittle fracture show that the method is able to reproduce experimental fracture patterns quite well.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Haitao Wang ◽  
Xiangyang Zeng ◽  
Ye Lei

Wave-based methods for acoustic simulations within enclosures suffer the numerical dispersion and then usually have evident dispersion error for problems with high wave numbers. To improve the upper limit of calculating frequency for 3D problems, a hybrid smoothed finite element method (hybrid SFEM) is proposed in this paper. This method employs the smoothing technique to realize the reduction of the numerical dispersion. By constructing a type of mixed smoothing domain, the traditional node-based and face-based smoothing techniques are mixed in the hybrid SFEM to give a more accurate stiffness matrix, which is widely believed to be the ultimate cause for the numerical dispersion error. The numerical examples demonstrate that the hybrid SFEM has better accuracy than the standard FEM and traditional smoothed FEMs under the condition of the same basic elements. Moreover, the hybrid SFEM also has good performance on the computational efficiency. A convergence experiment shows that it costs less time than other comparison methods to achieve the same computational accuracy.


2016 ◽  
Vol 168 ◽  
pp. 16-29 ◽  
Author(s):  
Eric Li ◽  
Junning Chen ◽  
Zhongpu Zhang ◽  
Jianguang Fang ◽  
G.R. Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document