scholarly journals Energy saving application of phase change materials in buildings: A comprehensive review

Author(s):  
Zhang Yichao ◽  
Wang Ying ◽  
Zhou Jinghai ◽  
Zhang Zhongren ◽  
Li Tong
Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 275
Author(s):  
Ahmed J. Hamad

One essential utilization of phase change materials as energy storage materials is energy saving and temperature control in air conditioning and indirect solar air drying systems. This study presents an experimental investigation evaluating the characteristics and energy savings of multiple phase change materials subjected to internal flow in an air heating system during charging and discharging cycles. The experimental tests were conducted using a test rig consisting of two main parts, an air supply duct and a room model equipped with phase change materials (PCMs) placed in rectangular aluminum panels. Analysis of the results was based on three test cases: PCM1 (Paraffin wax) placed in the air duct was used alone in the first case; PCM2 (RT–42) placed in the room model was used alone in the second case; and in the third case, the two PCMs (PCM1 and PCM2) were used at the same time. The results revealed a significant improvement in the energy savings and room model temperature control for the air heating system incorporated with multiple PCMs compared with that of a single PCM. Complete melting during the charging cycle occurred at temperatures in the range of 57–60 °C for PCM1 and 38–43 °C for PCM2, respectively, thereby validating the reported PCMs’ melting–solidification results. Multiple PCMs maintained the room air temperature at the desired range of 35–45.2 °C in the air heating applications by minimizing the air temperature fluctuations. The augmentation in discharging time and improvement in the room model temperature using multiple PCMs were about 28.4% higher than those without the use of PCMs. The total energy saving using two PCMs was higher by about 29.5% and 46.7% compared with the use of PCM1 and PCM2, respectively. It can be concluded that multiple PCMs have revealed higher energy savings and thermal stability for the air heating system considered in the current study.


Author(s):  
Mohamed Teggar ◽  
Müslüm Arıcı ◽  
Mehmet Selçuk Mert ◽  
Seyed Soheil Mousavi Ajarostaghi ◽  
Hakeem Niyas ◽  
...  

2021 ◽  
Vol 41 ◽  
pp. 102418
Author(s):  
Ashraf Mohamed Heniegal ◽  
Omar Mohamed Omar Ibrahim ◽  
Nour Bassim Frahat ◽  
Mohamed Amin

2021 ◽  
Vol 1 (1) ◽  
pp. 7-14
Author(s):  
Qudama M. Q. Al-Yasiri ◽  
Márta Szabó

Phase change materials (PCMs) are increasingly investigated in the last years as successful in many thermal energy storage applications. In the building sector, PCMs are utilised to improve building efficiency by reducing cooling/heating loads and promoting renewable energy sources, such as solar energy. This paper shows the recent research works on integrating PCMs with building envelope for heating purposes. The main PCM categories and their main characteristics are presented, focusing on PCM types applied for building heating applications. The main methods adopted to incorporate PCMs with building elements and materials are mentioned, and the popular passive and active incorporation techniques are discussed. Lastly, the main contribution to building energy saving is discussed in terms of heating applications. The analysed studies indicated that all PCMs could improve the building energy saving in the cold climates by up to 44.16% regardless of their types and techniques. Several conclusions and recommendations are derived from the analysed studies that are believed to be a guideline for further research.


2013 ◽  
Vol 683 ◽  
pp. 106-109
Author(s):  
Xiao Gang Zhao ◽  
Ying Pan

Phase change materials, abbreviated as PCM, due to the excellent heat storage performance, have been used as building materials and got more and more attention in recent years. The article introduce the building application of phase change material, and discuss its contribution to the building energy saving.


Solar Energy ◽  
2020 ◽  
Vol 207 ◽  
pp. 539-563 ◽  
Author(s):  
Adil A.M. Omara ◽  
Abuelnuor A.A. Abuelnuor ◽  
Hussein A. Mohammed ◽  
Daryoush Habibi ◽  
Obai Younis

Author(s):  
Zacharias Gkouskos ◽  
George Limnaios ◽  
Luisa F. Cabeza ◽  
Theocharis Tsoutsos

Sign in / Sign up

Export Citation Format

Share Document