scholarly journals Energy Saving and Charging Discharging Characteristics of Multiple PCMs Subjected to Internal Air Flow

Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 275
Author(s):  
Ahmed J. Hamad

One essential utilization of phase change materials as energy storage materials is energy saving and temperature control in air conditioning and indirect solar air drying systems. This study presents an experimental investigation evaluating the characteristics and energy savings of multiple phase change materials subjected to internal flow in an air heating system during charging and discharging cycles. The experimental tests were conducted using a test rig consisting of two main parts, an air supply duct and a room model equipped with phase change materials (PCMs) placed in rectangular aluminum panels. Analysis of the results was based on three test cases: PCM1 (Paraffin wax) placed in the air duct was used alone in the first case; PCM2 (RT–42) placed in the room model was used alone in the second case; and in the third case, the two PCMs (PCM1 and PCM2) were used at the same time. The results revealed a significant improvement in the energy savings and room model temperature control for the air heating system incorporated with multiple PCMs compared with that of a single PCM. Complete melting during the charging cycle occurred at temperatures in the range of 57–60 °C for PCM1 and 38–43 °C for PCM2, respectively, thereby validating the reported PCMs’ melting–solidification results. Multiple PCMs maintained the room air temperature at the desired range of 35–45.2 °C in the air heating applications by minimizing the air temperature fluctuations. The augmentation in discharging time and improvement in the room model temperature using multiple PCMs were about 28.4% higher than those without the use of PCMs. The total energy saving using two PCMs was higher by about 29.5% and 46.7% compared with the use of PCM1 and PCM2, respectively. It can be concluded that multiple PCMs have revealed higher energy savings and thermal stability for the air heating system considered in the current study.

2021 ◽  
Author(s):  
Lindsay Fialkov

This major research project focuses on reducing the energy consumption, by modelling a radiant floor heating system with phase change materials, in the Toronto climate. Computer generated simulations were performed using DesignBuilder software, using an example of a typical condominium in Toronto .Two south facing suites and two north facing suites were investigated. Of those suites, one north facing suite had PCM below the finished floor, as well as one south facing suite. The objective of these simulations was to determine the impact of using PCM in the condo suites. Three different types of PCM were used, in order to determine which type had the biggest energy savings. The PCMs were M91/Q21, M51/Q21 and M27/Q21. The final results showed that the suites with the M27/Q21 PCM had the lowest energy usage. A cost savings comparison was performed based on the rate of energy used and the cost of the energy, provided by the Ontario Energy Board.


2012 ◽  
Vol 549 ◽  
pp. 572-575
Author(s):  
Huan Liu ◽  
Yan Rong Tang ◽  
Ya Fei Guo ◽  
Shi Qiang Wang ◽  
Tian Long Deng

Energy demand to ensure a comfortable environment for humans has increased worldwide, especially in the application of phase change material (PCM) for resident living. In this paper, the current applications of PCMs including solar water-heating system, solar cooker and residential building aspects were presented, and the suggestions for future works were also discussed.


2021 ◽  
Author(s):  
Lindsay Fialkov

This major research project focuses on reducing the energy consumption, by modelling a radiant floor heating system with phase change materials, in the Toronto climate. Computer generated simulations were performed using DesignBuilder software, using an example of a typical condominium in Toronto .Two south facing suites and two north facing suites were investigated. Of those suites, one north facing suite had PCM below the finished floor, as well as one south facing suite. The objective of these simulations was to determine the impact of using PCM in the condo suites. Three different types of PCM were used, in order to determine which type had the biggest energy savings. The PCMs were M91/Q21, M51/Q21 and M27/Q21. The final results showed that the suites with the M27/Q21 PCM had the lowest energy usage. A cost savings comparison was performed based on the rate of energy used and the cost of the energy, provided by the Ontario Energy Board.


2013 ◽  
Vol 416-417 ◽  
pp. 1741-1745 ◽  
Author(s):  
Yong Hua Jing

The paper research building energy-saving technologies, in particular, phase change materials and traditional building materials combined into a new building material with a heat storage and heat. It has the energy density and the approximate constant temperature exothermic absorption, etc., can effectively maintain the comfort of the environment and reduce building heating and cooling energy consumption and costs. By collecting and analyzing the data in the the Model room temperature under infrared lamp irradiation, found that compared with the model of the phase change material without adding room, both the peak temperature of the maximum differential is 1.70 °C, the energy-saving efficiency up to 27.56%, with good energy savings.


2021 ◽  
Vol 41 ◽  
pp. 102418
Author(s):  
Ashraf Mohamed Heniegal ◽  
Omar Mohamed Omar Ibrahim ◽  
Nour Bassim Frahat ◽  
Mohamed Amin

2021 ◽  
Author(s):  
Christopher L. K. Wang

As sleep is unconscious, the traditional definition of thermal comfort with conscious judgment does not apply. In this thesis sleep thermal comfort is defined as the thermal condition which enables sleep to most efficiently rejuvenate the body and mind. A comfort model was developed to stimulate the respective thermal environment required to achieve the desired body thermal conditions and a new infrared sphere method was developed to measure mean radiant temperature. Existing heating conditions according to building code conditions during sleeping hours was calculated to likely overheat a sleeping person and allowed energy saving potential by reducing nighttime heating set points. Experimenting with existing radiantly and forced air heated residential buildings, it was confirmed that thermal environment was too hot for comfortable sleep and that the infrared sphere method shows promise. With the site data, potential energy savings were calculated and around 10% of energy consumption reduction may be achieved during peak heating.


2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


2021 ◽  
Author(s):  
Omar Siddiqui

The applicability of utilizing a variety of thermal mass including phase change materials with commonly used building materials is investigated through the use of simulations and physical testing. The thermal performance and occupant comfort potential of a novel solid-solid phase change material, known as Dal HSM, is compared and contrasted to commonly available forms of thermal mass. Detailed experimentation is conducted to successfully integrate Dal HSM with gypsum and concrete. The measurement of physical characteristics such as compressive strength and modulus of rupture is conducted to ensure that the PCM-composite compound retains the structural integrity to be utilized in a typical building. The use of thermal mass in the Toronto Net Zero house was found to contribute to energy savings of 10-15% when different types of thermal mass were used. The comfort level of the indoor occupants was also found to increase. The performance of Dal HSM was found to be comparable to a commercially available PCM known as Micronal in the heating mode. The cooling mode revealed that Dal HSM provided slightly lower energy savings when compared to Micronal due to a lower phase transition temperature and latent heat. The performance of physical test revealed a decrease in the compressive strength as the concentration of Dal HSM was increased in the PCM-gypsum specimens. Tests were also performed to analyze the impact of increasing the PCM concentration on the flexural strength of PCM-gypsum composite.


Sign in / Sign up

Export Citation Format

Share Document