scholarly journals About concrete and reinforced concrete corrosion

Author(s):  
Ilshat Mirsayapov ◽  
Samat Yakupov ◽  
Majd Hassoun
2013 ◽  
Vol 686 ◽  
pp. 261-265 ◽  
Author(s):  
M. Ihsan ◽  
Syarizal Fonna ◽  
M. Ridha ◽  
Syifaul Huzni ◽  
A.K. Arrifin

The corrosion of structures is needed to be identified early to prevent any severe damage of buildings. The conventional technique such as potential mapping for diagnosing of reinforced concrete corrosion has been used widely in the field. However, the method has limitation such as less accuracy, laborious and time-consuming. This study is conducted to develop boundary element method 3 dimensions by considering polarization curves of anode and cathode for corrosion simulation and analyzed the influences of anode profiles for RC corrosion simulation. In this method, the potential in concrete domain was modeled by Laplace’s equation. The anode and cathode areas were represented by each polarization curves. The numerical simulation result shows that the boundary element method 3 dimensions successfully solved the Laplace’s equation in order to simulate corrosion phenomenon of reinforced concrete. The influences of anode profiles for RC corrosion simulation have been analyzed. Further works are needed to reduce the computational effort of corrosion simulation.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Syarizal Fonna ◽  
Israr M. Ibrahim ◽  
M. Ridha ◽  
Syifaul Huzni ◽  
A. K. Ariffin

Many studies have suggested that the corrosion detection of reinforced concrete (RC) based on electrical potential on concrete surface was an ill-posed problem, and thus it may present an inaccurate interpretation of corrosion. However, it is difficult to prove the ill-posed problem of the RC corrosion detection by experiment. One promising technique is using a numerical method. The objective of this study is to simulate the ill-posed problem of RC corrosion detection based on electrical potential on a concrete surface using the Boundary Element Method (BEM). BEM simulates electrical potential within a concrete domain. In order to simulate the electrical potential, the domain is assumed to be governed by Laplace’s equation. The boundary conditions for the corrosion area and the noncorrosion area of rebar were selected from its polarization curve. A rectangular reinforced concrete model with a single rebar was chosen to be simulated using BEM. The numerical simulation results using BEM showed that the same electrical potential distribution on the concrete surface could be generated from different combinations of parameters. Corresponding to such a phenomenon, this problem can be categorized as an ill-posed problem since it has many solutions. Therefore, BEM successfully simulates the ill-posed problem of reinforced concrete corrosion detection.


Sign in / Sign up

Export Citation Format

Share Document