Low-cost carbon-based counter electrodes for dye sensitized solar cells

2015 ◽  
Vol 2 (7) ◽  
pp. 075502 ◽  
Author(s):  
M Barberio ◽  
A Imbrogno ◽  
D R Grosso ◽  
A Bonanno ◽  
F Xu
Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2779 ◽  
Author(s):  
Manas R. Samantaray ◽  
Abhay Kumar Mondal ◽  
Govindhasamy Murugadoss ◽  
Sudhagar Pitchaimuthu ◽  
Santanu Das ◽  
...  

This article provides an overview of the structural and physicochemical properties of stable carbon-based nanomaterials and their applications as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). The research community has long sought to harvest highly efficient third-generation DSSCs by developing carbon-based CEs, which are among the most important components of DSSCs. Since the initial introduction of DSSCs, Pt-based electrodes have been commonly used as CEs owing to their high-electrocatalytic activities, thus, accelerating the redox couple at the electrode/electrolyte interface to complete the circuit. However, Pt-based electrodes have several limitations due to their cost, abundance, complicated facility, and low corrosion resistance in a liquid electrolyte, which further restricts the large-area applications of DSSCs. Although carbon-based nanostructures showed the best potential to replace Pt-CE of DSSC, several new properties and characteristics of carbon-CE have been reported for future enhancements in this field. In this review, we discuss the detailed synthesis, properties, and performances of various carbonaceous materials proposed for DSSC-CE. These nano-carbon materials include carbon nanoparticles, activated carbon, carbon nanofibers, carbon nanotube, two-dimensional graphene, and hybrid carbon material composites. Among the CE materials currently available, carbon-carbon hybridized electrodes show the best performance efficiency (up to 10.05%) with a high fill factor (83%). Indeed, up to 8.23% improvements in cell efficiency may be achieved by a carbon-metal hybrid material under sun condition. This review then provides guidance on how to choose appropriate carbon nanomaterials to improve the performance of CEs used in DSSCs.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
F. M. Al-Marzouki ◽  
S. Abdalla ◽  
S. Al-Ameer

Dye sensitized solar cells (DSSCs) are very sensitive to electrodes, due to either high cost or easy corrosion problems. To minimize these factors, we present DSSCs with cheap carbon nanotubes as counter electrodes. In addition, we suggest replacing the electrolyte (in typical DSSCs) with a solid film of powdered CsSnI3. The electrical behavior (I-Vcharacteristics) of the proposed device has been measured for different shading conditions. In the light of a theoretical model based on the presence of two diodes, the experimental data have been explained, taking into account a new equivalent circuit for the DSSC. These DSSCs may receive different levels of sun radiation, which stimulates the study of partial shading; so, we have studied the effect of different shadow rates on the solar conversion efficiency of a unit of 4-W-connected DSSCs. The validity of the present model has been examined by fitting it intoI-Vcharacteristics at different shading rates.


2020 ◽  
Vol 4 (7) ◽  
pp. 3604-3612
Author(s):  
Haifeng Xu ◽  
Zhong Jin

The rational design of high-performance yet low-cost counter electrodes (CEs) with exceptional catalytic activity for the I−/I3− redox couple and excellent corrosion resistance is of great importance for dye-sensitized solar cells (DSSCs).


2014 ◽  
Vol 250 ◽  
pp. 242-249 ◽  
Author(s):  
D. Sebastián ◽  
V. Baglio ◽  
M. Girolamo ◽  
R. Moliner ◽  
M.J. Lázaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document